MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adant423OLD Structured version   Visualization version   GIF version

Theorem adant423OLD 822
Description: Obsolete as of 2-Oct-2021. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
adant423.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
adant423OLD ((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜒)

Proof of Theorem adant423OLD
StepHypRef Expression
1 simplll 797 . 2 ((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜑)
2 adant423.1 . 2 ((𝜑𝜓) → 𝜒)
31, 2sylancom 700 1 ((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator