MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addasspr Structured version   Visualization version   GIF version

Theorem addasspr 9701
Description: Addition of positive reals is associative. Proposition 9-3.5(i) of [Gleason] p. 123. (Contributed by NM, 18-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addasspr ((𝐴 +P 𝐵) +P 𝐶) = (𝐴 +P (𝐵 +P 𝐶))

Proof of Theorem addasspr
Dummy variables 𝑓 𝑔 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-plp 9662 . 2 +P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦 +Q 𝑧)})
2 addclnq 9624 . 2 ((𝑦Q𝑧Q) → (𝑦 +Q 𝑧) ∈ Q)
3 dmplp 9691 . 2 dom +P = (P × P)
4 addclpr 9697 . 2 ((𝑓P𝑔P) → (𝑓 +P 𝑔) ∈ P)
5 addassnq 9637 . 2 ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q ))
61, 2, 3, 4, 5genpass 9688 1 ((𝐴 +P 𝐵) +P 𝐶) = (𝐴 +P (𝐵 +P 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  (class class class)co 6527   +Q cplq 9534   +P cpp 9540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-omul 7430  df-er 7607  df-ni 9551  df-pli 9552  df-mi 9553  df-lti 9554  df-plpq 9587  df-mpq 9588  df-ltpq 9589  df-enq 9590  df-nq 9591  df-erq 9592  df-plq 9593  df-mq 9594  df-1nq 9595  df-rq 9596  df-ltnq 9597  df-np 9660  df-plp 9662
This theorem is referenced by:  ltaprlem  9723  enrer  9743  addcmpblnr  9747  mulcmpblnrlem  9748  ltsrpr  9755  addasssr  9766  mulasssr  9768  distrsr  9769  m1p1sr  9770  m1m1sr  9771  ltsosr  9772  0idsr  9775  1idsr  9776  ltasr  9778  recexsrlem  9781  mulgt0sr  9783  map2psrpr  9788
  Copyright terms: Public domain W3C validator