![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addclpi | Structured version Visualization version GIF version |
Description: Closure of addition of positive integers. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addclpi | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) ∈ N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addpiord 9898 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +𝑜 𝐵)) | |
2 | pinn 9892 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
3 | pinn 9892 | . . . . 5 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
4 | nnacl 7860 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 𝐵) ∈ ω) | |
5 | 3, 4 | sylan2 492 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +𝑜 𝐵) ∈ ω) |
6 | elni2 9891 | . . . . 5 ⊢ (𝐵 ∈ N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) | |
7 | nnaordi 7867 | . . . . . . . 8 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝐵))) | |
8 | ne0i 4064 | . . . . . . . 8 ⊢ ((𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝐵) → (𝐴 +𝑜 𝐵) ≠ ∅) | |
9 | 7, 8 | syl6 35 | . . . . . . 7 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +𝑜 𝐵) ≠ ∅)) |
10 | 9 | expcom 450 | . . . . . 6 ⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (∅ ∈ 𝐵 → (𝐴 +𝑜 𝐵) ≠ ∅))) |
11 | 10 | imp32 448 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) → (𝐴 +𝑜 𝐵) ≠ ∅) |
12 | 6, 11 | sylan2b 493 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +𝑜 𝐵) ≠ ∅) |
13 | elni 9890 | . . . 4 ⊢ ((𝐴 +𝑜 𝐵) ∈ N ↔ ((𝐴 +𝑜 𝐵) ∈ ω ∧ (𝐴 +𝑜 𝐵) ≠ ∅)) | |
14 | 5, 12, 13 | sylanbrc 701 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +𝑜 𝐵) ∈ N) |
15 | 2, 14 | sylan 489 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +𝑜 𝐵) ∈ N) |
16 | 1, 15 | eqeltrd 2839 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) ∈ N) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2139 ≠ wne 2932 ∅c0 4058 (class class class)co 6813 ωcom 7230 +𝑜 coa 7726 Ncnpi 9858 +N cpli 9859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-oadd 7733 df-ni 9886 df-pli 9887 |
This theorem is referenced by: addasspi 9909 distrpi 9912 addcanpi 9913 ltapi 9917 1lt2pi 9919 indpi 9921 addpqf 9958 adderpqlem 9968 addassnq 9972 distrnq 9975 1lt2nq 9987 archnq 9994 prlem934 10047 |
Copyright terms: Public domain | W3C validator |