MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclpr Structured version   Visualization version   GIF version

Theorem addclpr 10443
Description: Closure of addition on positive reals. First statement of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addclpr ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)

Proof of Theorem addclpr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-plp 10408 . 2 +P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦 +Q 𝑧)})
2 addclnq 10370 . 2 ((𝑦Q𝑧Q) → (𝑦 +Q 𝑧) ∈ Q)
3 ltanq 10396 . 2 (Q → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
4 addcomnq 10376 . 2 (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥)
5 addclprlem2 10442 . 2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → 𝑥 ∈ (𝐴 +P 𝐵)))
61, 2, 3, 4, 5genpcl 10433 1 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2113  (class class class)co 7159   +Q cplq 10280  Pcnp 10284   +P cpp 10286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-omul 8110  df-er 8292  df-ni 10297  df-pli 10298  df-mi 10299  df-lti 10300  df-plpq 10333  df-mpq 10334  df-ltpq 10335  df-enq 10336  df-nq 10337  df-erq 10338  df-plq 10339  df-mq 10340  df-1nq 10341  df-rq 10342  df-ltnq 10343  df-np 10406  df-plp 10408
This theorem is referenced by:  addasspr  10447  distrlem1pr  10450  distrlem4pr  10451  ltaddpr  10459  ltexprlem7  10467  ltaprlem  10469  ltapr  10470  addcanpr  10471  enrer  10488  addcmpblnr  10494  mulcmpblnr  10496  ltsrpr  10502  1sr  10506  m1r  10507  addclsr  10508  mulclsr  10509  addasssr  10513  mulasssr  10515  distrsr  10516  m1p1sr  10517  m1m1sr  10518  ltsosr  10519  0lt1sr  10520  0idsr  10522  1idsr  10523  00sr  10524  ltasr  10525  recexsrlem  10528  mulgt0sr  10530  mappsrpr  10533
  Copyright terms: Public domain W3C validator