MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcompq Structured version   Visualization version   GIF version

Theorem addcompq 9724
Description: Addition of positive fractions is commutative. (Contributed by NM, 30-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addcompq (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴)

Proof of Theorem addcompq
StepHypRef Expression
1 addcompi 9668 . . . 4 (((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))) = (((1st𝐵) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐵)))
2 mulcompi 9670 . . . 4 ((2nd𝐴) ·N (2nd𝐵)) = ((2nd𝐵) ·N (2nd𝐴))
31, 2opeq12i 4380 . . 3 ⟨(((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐵))⟩ = ⟨(((1st𝐵) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐴))⟩
4 addpipq2 9710 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = ⟨(((1st𝐴) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐵))⟩)
5 addpipq2 9710 . . . 4 ((𝐵 ∈ (N × N) ∧ 𝐴 ∈ (N × N)) → (𝐵 +pQ 𝐴) = ⟨(((1st𝐵) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐴))⟩)
65ancoms 469 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 +pQ 𝐴) = ⟨(((1st𝐵) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐴))⟩)
73, 4, 63eqtr4a 2681 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴))
8 addpqf 9718 . . . 4 +pQ :((N × N) × (N × N))⟶(N × N)
98fdmi 6014 . . 3 dom +pQ = ((N × N) × (N × N))
109ndmovcom 6781 . 2 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴))
117, 10pm2.61i 176 1 (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1480  wcel 1987  cop 4159   × cxp 5077  cfv 5852  (class class class)co 6610  1st c1st 7118  2nd c2nd 7119  Ncnpi 9618   +N cpli 9619   ·N cmi 9620   +pQ cplpq 9622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-oadd 7516  df-omul 7517  df-ni 9646  df-pli 9647  df-mi 9648  df-plpq 9682
This theorem is referenced by:  addcomnq  9725  adderpq  9730
  Copyright terms: Public domain W3C validator