MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adderpqlem Structured version   Visualization version   GIF version

Theorem adderpqlem 9988
Description: Lemma for adderpq 9990. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
adderpqlem ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ (𝐴 +pQ 𝐶) ~Q (𝐵 +pQ 𝐶)))

Proof of Theorem adderpqlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 7366 . . . . . 6 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
213ad2ant1 1128 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (1st𝐴) ∈ N)
3 xp2nd 7367 . . . . . 6 (𝐶 ∈ (N × N) → (2nd𝐶) ∈ N)
433ad2ant3 1130 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (2nd𝐶) ∈ N)
5 mulclpi 9927 . . . . 5 (((1st𝐴) ∈ N ∧ (2nd𝐶) ∈ N) → ((1st𝐴) ·N (2nd𝐶)) ∈ N)
62, 4, 5syl2anc 696 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((1st𝐴) ·N (2nd𝐶)) ∈ N)
7 xp1st 7366 . . . . . 6 (𝐶 ∈ (N × N) → (1st𝐶) ∈ N)
873ad2ant3 1130 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (1st𝐶) ∈ N)
9 xp2nd 7367 . . . . . 6 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
1093ad2ant1 1128 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (2nd𝐴) ∈ N)
11 mulclpi 9927 . . . . 5 (((1st𝐶) ∈ N ∧ (2nd𝐴) ∈ N) → ((1st𝐶) ·N (2nd𝐴)) ∈ N)
128, 10, 11syl2anc 696 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((1st𝐶) ·N (2nd𝐴)) ∈ N)
13 addclpi 9926 . . . 4 ((((1st𝐴) ·N (2nd𝐶)) ∈ N ∧ ((1st𝐶) ·N (2nd𝐴)) ∈ N) → (((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))) ∈ N)
146, 12, 13syl2anc 696 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))) ∈ N)
15 mulclpi 9927 . . . 4 (((2nd𝐴) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐴) ·N (2nd𝐶)) ∈ N)
1610, 4, 15syl2anc 696 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((2nd𝐴) ·N (2nd𝐶)) ∈ N)
17 xp1st 7366 . . . . . 6 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
18173ad2ant2 1129 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (1st𝐵) ∈ N)
19 mulclpi 9927 . . . . 5 (((1st𝐵) ∈ N ∧ (2nd𝐶) ∈ N) → ((1st𝐵) ·N (2nd𝐶)) ∈ N)
2018, 4, 19syl2anc 696 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((1st𝐵) ·N (2nd𝐶)) ∈ N)
21 xp2nd 7367 . . . . . 6 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
22213ad2ant2 1129 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (2nd𝐵) ∈ N)
23 mulclpi 9927 . . . . 5 (((1st𝐶) ∈ N ∧ (2nd𝐵) ∈ N) → ((1st𝐶) ·N (2nd𝐵)) ∈ N)
248, 22, 23syl2anc 696 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((1st𝐶) ·N (2nd𝐵)) ∈ N)
25 addclpi 9926 . . . 4 ((((1st𝐵) ·N (2nd𝐶)) ∈ N ∧ ((1st𝐶) ·N (2nd𝐵)) ∈ N) → (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ∈ N)
2620, 24, 25syl2anc 696 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ∈ N)
27 mulclpi 9927 . . . 4 (((2nd𝐵) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
2822, 4, 27syl2anc 696 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
29 enqbreq 9953 . . 3 ((((((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))) ∈ N ∧ ((2nd𝐴) ·N (2nd𝐶)) ∈ N) ∧ ((((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ∈ N ∧ ((2nd𝐵) ·N (2nd𝐶)) ∈ N)) → (⟨(((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐶))⟩ ~Q ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩ ↔ ((((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))))))
3014, 16, 26, 28, 29syl22anc 1478 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (⟨(((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐶))⟩ ~Q ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩ ↔ ((((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))))))
31 addpipq2 9970 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 +pQ 𝐶) = ⟨(((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐶))⟩)
32313adant2 1126 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 +pQ 𝐶) = ⟨(((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐶))⟩)
33 addpipq2 9970 . . . 4 ((𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐵 +pQ 𝐶) = ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩)
34333adant1 1125 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐵 +pQ 𝐶) = ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩)
3532, 34breq12d 4817 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((𝐴 +pQ 𝐶) ~Q (𝐵 +pQ 𝐶) ↔ ⟨(((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))), ((2nd𝐴) ·N (2nd𝐶))⟩ ~Q ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩))
36 enqbreq2 9954 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
37363adant3 1127 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
38 mulclpi 9927 . . . . 5 (((2nd𝐶) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐶) ·N (2nd𝐶)) ∈ N)
394, 4, 38syl2anc 696 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((2nd𝐶) ·N (2nd𝐶)) ∈ N)
40 mulclpi 9927 . . . . 5 (((1st𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
412, 22, 40syl2anc 696 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
42 mulcanpi 9934 . . . 4 ((((2nd𝐶) ·N (2nd𝐶)) ∈ N ∧ ((1st𝐴) ·N (2nd𝐵)) ∈ N) → ((((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
4339, 41, 42syl2anc 696 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
44 mulcompi 9930 . . . . . . . 8 (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐴) ·N (2nd𝐵)) ·N ((2nd𝐶) ·N (2nd𝐶)))
45 fvex 6363 . . . . . . . . 9 (1st𝐴) ∈ V
46 fvex 6363 . . . . . . . . 9 (2nd𝐵) ∈ V
47 fvex 6363 . . . . . . . . 9 (2nd𝐶) ∈ V
48 mulcompi 9930 . . . . . . . . 9 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
49 mulasspi 9931 . . . . . . . . 9 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
5045, 46, 47, 48, 49, 47caov4 7031 . . . . . . . 8 (((1st𝐴) ·N (2nd𝐵)) ·N ((2nd𝐶) ·N (2nd𝐶))) = (((1st𝐴) ·N (2nd𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶)))
5144, 50eqtri 2782 . . . . . . 7 (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐴) ·N (2nd𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶)))
52 fvex 6363 . . . . . . . . 9 (2nd𝐴) ∈ V
53 fvex 6363 . . . . . . . . 9 (1st𝐶) ∈ V
5452, 47, 53, 48, 49, 46caov4 7031 . . . . . . . 8 (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) = (((2nd𝐴) ·N (1st𝐶)) ·N ((2nd𝐶) ·N (2nd𝐵)))
55 mulcompi 9930 . . . . . . . . 9 ((2nd𝐴) ·N (1st𝐶)) = ((1st𝐶) ·N (2nd𝐴))
56 mulcompi 9930 . . . . . . . . 9 ((2nd𝐶) ·N (2nd𝐵)) = ((2nd𝐵) ·N (2nd𝐶))
5755, 56oveq12i 6826 . . . . . . . 8 (((2nd𝐴) ·N (1st𝐶)) ·N ((2nd𝐶) ·N (2nd𝐵))) = (((1st𝐶) ·N (2nd𝐴)) ·N ((2nd𝐵) ·N (2nd𝐶)))
5854, 57eqtri 2782 . . . . . . 7 (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) = (((1st𝐶) ·N (2nd𝐴)) ·N ((2nd𝐵) ·N (2nd𝐶)))
5951, 58oveq12i 6826 . . . . . 6 ((((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) +N (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵)))) = ((((1st𝐴) ·N (2nd𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶))) +N (((1st𝐶) ·N (2nd𝐴)) ·N ((2nd𝐵) ·N (2nd𝐶))))
60 addcompi 9928 . . . . . 6 ((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) = ((((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) +N (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))))
61 ovex 6842 . . . . . . 7 ((1st𝐴) ·N (2nd𝐶)) ∈ V
62 ovex 6842 . . . . . . 7 ((1st𝐶) ·N (2nd𝐴)) ∈ V
63 ovex 6842 . . . . . . 7 ((2nd𝐵) ·N (2nd𝐶)) ∈ V
64 distrpi 9932 . . . . . . 7 (𝑥 ·N (𝑦 +N 𝑧)) = ((𝑥 ·N 𝑦) +N (𝑥 ·N 𝑧))
6561, 62, 63, 48, 64caovdir 7034 . . . . . 6 ((((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))) ·N ((2nd𝐵) ·N (2nd𝐶))) = ((((1st𝐴) ·N (2nd𝐶)) ·N ((2nd𝐵) ·N (2nd𝐶))) +N (((1st𝐶) ·N (2nd𝐴)) ·N ((2nd𝐵) ·N (2nd𝐶))))
6659, 60, 653eqtr4i 2792 . . . . 5 ((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) = ((((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))) ·N ((2nd𝐵) ·N (2nd𝐶)))
67 addcompi 9928 . . . . . 6 ((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐶)))) = ((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐶))) +N (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))))
68 mulasspi 9931 . . . . . . . 8 (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) = ((2nd𝐶) ·N ((2nd𝐶) ·N ((1st𝐵) ·N (2nd𝐴))))
69 mulcompi 9930 . . . . . . . . . 10 ((2nd𝐶) ·N ((2nd𝐶) ·N ((1st𝐵) ·N (2nd𝐴)))) = (((2nd𝐶) ·N ((1st𝐵) ·N (2nd𝐴))) ·N (2nd𝐶))
70 mulasspi 9931 . . . . . . . . . . . 12 (((2nd𝐴) ·N (2nd𝐶)) ·N (1st𝐵)) = ((2nd𝐴) ·N ((2nd𝐶) ·N (1st𝐵)))
71 mulcompi 9930 . . . . . . . . . . . 12 ((2nd𝐴) ·N ((2nd𝐶) ·N (1st𝐵))) = (((2nd𝐶) ·N (1st𝐵)) ·N (2nd𝐴))
72 mulasspi 9931 . . . . . . . . . . . 12 (((2nd𝐶) ·N (1st𝐵)) ·N (2nd𝐴)) = ((2nd𝐶) ·N ((1st𝐵) ·N (2nd𝐴)))
7370, 71, 723eqtrri 2787 . . . . . . . . . . 11 ((2nd𝐶) ·N ((1st𝐵) ·N (2nd𝐴))) = (((2nd𝐴) ·N (2nd𝐶)) ·N (1st𝐵))
7473oveq1i 6824 . . . . . . . . . 10 (((2nd𝐶) ·N ((1st𝐵) ·N (2nd𝐴))) ·N (2nd𝐶)) = ((((2nd𝐴) ·N (2nd𝐶)) ·N (1st𝐵)) ·N (2nd𝐶))
7569, 74eqtri 2782 . . . . . . . . 9 ((2nd𝐶) ·N ((2nd𝐶) ·N ((1st𝐵) ·N (2nd𝐴)))) = ((((2nd𝐴) ·N (2nd𝐶)) ·N (1st𝐵)) ·N (2nd𝐶))
76 mulasspi 9931 . . . . . . . . 9 ((((2nd𝐴) ·N (2nd𝐶)) ·N (1st𝐵)) ·N (2nd𝐶)) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐶)))
7775, 76eqtri 2782 . . . . . . . 8 ((2nd𝐶) ·N ((2nd𝐶) ·N ((1st𝐵) ·N (2nd𝐴)))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐶)))
7868, 77eqtri 2782 . . . . . . 7 (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) = (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐶)))
7978oveq2i 6825 . . . . . 6 ((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))) = ((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐶))))
80 distrpi 9932 . . . . . 6 (((2nd𝐴) ·N (2nd𝐶)) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵)))) = ((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐶))) +N (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))))
8167, 79, 803eqtr4i 2792 . . . . 5 ((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))) = (((2nd𝐴) ·N (2nd𝐶)) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))))
8266, 81eqeq12i 2774 . . . 4 (((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) = ((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))) ↔ ((((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵)))))
83 mulclpi 9927 . . . . . 6 ((((2nd𝐴) ·N (2nd𝐶)) ∈ N ∧ ((1st𝐶) ·N (2nd𝐵)) ∈ N) → (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) ∈ N)
8416, 24, 83syl2anc 696 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) ∈ N)
85 mulclpi 9927 . . . . . 6 ((((2nd𝐶) ·N (2nd𝐶)) ∈ N ∧ ((1st𝐴) ·N (2nd𝐵)) ∈ N) → (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) ∈ N)
8639, 41, 85syl2anc 696 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) ∈ N)
87 addcanpi 9933 . . . . 5 (((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) ∈ N ∧ (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) ∈ N) → (((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) = ((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))) ↔ (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))))
8884, 86, 87syl2anc 696 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) = ((((2nd𝐴) ·N (2nd𝐶)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))) ↔ (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))))
8982, 88syl5rbbr 275 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → ((((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ ((((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))))))
9037, 43, 893bitr2d 296 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((((1st𝐴) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐴))) ·N ((2nd𝐵) ·N (2nd𝐶))) = (((2nd𝐴) ·N (2nd𝐶)) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))))))
9130, 35, 903bitr4rd 301 1 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ (𝐴 +pQ 𝐶) ~Q (𝐵 +pQ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1072   = wceq 1632  wcel 2139  cop 4327   class class class wbr 4804   × cxp 5264  cfv 6049  (class class class)co 6814  1st c1st 7332  2nd c2nd 7333  Ncnpi 9878   +N cpli 9879   ·N cmi 9880   +pQ cplpq 9882   ~Q ceq 9885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-oadd 7734  df-omul 7735  df-ni 9906  df-pli 9907  df-mi 9908  df-plpq 9942  df-enq 9945
This theorem is referenced by:  adderpq  9990
  Copyright terms: Public domain W3C validator