MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addgt0sr Structured version   Visualization version   GIF version

Theorem addgt0sr 10525
Description: The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addgt0sr ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵))

Proof of Theorem addgt0sr
StepHypRef Expression
1 ltrelsr 10489 . . . . 5 <R ⊆ (R × R)
21brel 5616 . . . 4 (0R <R 𝐴 → (0RR𝐴R))
3 ltasr 10521 . . . . 5 (𝐴R → (0R <R 𝐵 ↔ (𝐴 +R 0R) <R (𝐴 +R 𝐵)))
4 0idsr 10518 . . . . . 6 (𝐴R → (𝐴 +R 0R) = 𝐴)
54breq1d 5075 . . . . 5 (𝐴R → ((𝐴 +R 0R) <R (𝐴 +R 𝐵) ↔ 𝐴 <R (𝐴 +R 𝐵)))
63, 5bitrd 281 . . . 4 (𝐴R → (0R <R 𝐵𝐴 <R (𝐴 +R 𝐵)))
72, 6simpl2im 506 . . 3 (0R <R 𝐴 → (0R <R 𝐵𝐴 <R (𝐴 +R 𝐵)))
87biimpa 479 . 2 ((0R <R 𝐴 ∧ 0R <R 𝐵) → 𝐴 <R (𝐴 +R 𝐵))
9 ltsosr 10515 . . 3 <R Or R
109, 1sotri 5986 . 2 ((0R <R 𝐴𝐴 <R (𝐴 +R 𝐵)) → 0R <R (𝐴 +R 𝐵))
118, 10syldan 593 1 ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2110   class class class wbr 5065  (class class class)co 7155  Rcnr 10286  0Rc0r 10287   +R cplr 10290   <R cltr 10292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-omul 8106  df-er 8288  df-ec 8290  df-qs 8294  df-ni 10293  df-pli 10294  df-mi 10295  df-lti 10296  df-plpq 10329  df-mpq 10330  df-ltpq 10331  df-enq 10332  df-nq 10333  df-erq 10334  df-plq 10335  df-mq 10336  df-1nq 10337  df-rq 10338  df-ltnq 10339  df-np 10402  df-1p 10403  df-plp 10404  df-ltp 10406  df-enr 10476  df-nr 10477  df-plr 10478  df-ltr 10480  df-0r 10481
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator