 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  addpqf Structured version   Visualization version   GIF version

 Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addpqf +pQ :((N × N) × (N × N))⟶(N × N)

Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 7158 . . . . . 6 (𝑥 ∈ (N × N) → (1st𝑥) ∈ N)
2 xp2nd 7159 . . . . . 6 (𝑦 ∈ (N × N) → (2nd𝑦) ∈ N)
3 mulclpi 9675 . . . . . 6 (((1st𝑥) ∈ N ∧ (2nd𝑦) ∈ N) → ((1st𝑥) ·N (2nd𝑦)) ∈ N)
41, 2, 3syl2an 494 . . . . 5 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st𝑥) ·N (2nd𝑦)) ∈ N)
5 xp1st 7158 . . . . . 6 (𝑦 ∈ (N × N) → (1st𝑦) ∈ N)
6 xp2nd 7159 . . . . . 6 (𝑥 ∈ (N × N) → (2nd𝑥) ∈ N)
7 mulclpi 9675 . . . . . 6 (((1st𝑦) ∈ N ∧ (2nd𝑥) ∈ N) → ((1st𝑦) ·N (2nd𝑥)) ∈ N)
85, 6, 7syl2anr 495 . . . . 5 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((1st𝑦) ·N (2nd𝑥)) ∈ N)
9 addclpi 9674 . . . . 5 ((((1st𝑥) ·N (2nd𝑦)) ∈ N ∧ ((1st𝑦) ·N (2nd𝑥)) ∈ N) → (((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))) ∈ N)
104, 8, 9syl2anc 692 . . . 4 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))) ∈ N)
11 mulclpi 9675 . . . . 5 (((2nd𝑥) ∈ N ∧ (2nd𝑦) ∈ N) → ((2nd𝑥) ·N (2nd𝑦)) ∈ N)
126, 2, 11syl2an 494 . . . 4 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((2nd𝑥) ·N (2nd𝑦)) ∈ N)
13 opelxpi 5118 . . . 4 (((((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))) ∈ N ∧ ((2nd𝑥) ·N (2nd𝑦)) ∈ N) → ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ (N × N))
1410, 12, 13syl2anc 692 . . 3 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ (N × N))
1514rgen2a 2973 . 2 𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ (N × N)
16 df-plpq 9690 . . 3 +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩)
1716fmpt2 7197 . 2 (∀𝑥 ∈ (N × N)∀𝑦 ∈ (N × N)⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ (N × N) ↔ +pQ :((N × N) × (N × N))⟶(N × N))
1815, 17mpbi 220 1 +pQ :((N × N) × (N × N))⟶(N × N)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 384   ∈ wcel 1987  ∀wral 2908  ⟨cop 4161   × cxp 5082  ⟶wf 5853  ‘cfv 5857  (class class class)co 6615  1st c1st 7126  2nd c2nd 7127  Ncnpi 9626   +N cpli 9627   ·N cmi 9628   +pQ cplpq 9630 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-oadd 7524  df-omul 7525  df-ni 9654  df-pli 9655  df-mi 9656  df-plpq 9690 This theorem is referenced by:  addclnq  9727  addnqf  9730  addcompq  9732  adderpq  9738  distrnq  9743
 Copyright terms: Public domain W3C validator