HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adj1 Structured version   Visualization version   GIF version

Theorem adj1 29712
Description: Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adj1 ((𝑇 ∈ dom adj𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵))

Proof of Theorem adj1
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funadj 29665 . . . . . . 7 Fun adj
2 funfvop 6822 . . . . . . 7 ((Fun adj𝑇 ∈ dom adj) → ⟨𝑇, (adj𝑇)⟩ ∈ adj)
31, 2mpan 688 . . . . . 6 (𝑇 ∈ dom adj → ⟨𝑇, (adj𝑇)⟩ ∈ adj)
4 dfadj2 29664 . . . . . 6 adj = {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦))}
53, 4eleqtrdi 2925 . . . . 5 (𝑇 ∈ dom adj → ⟨𝑇, (adj𝑇)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦))})
6 fvex 6685 . . . . . 6 (adj𝑇) ∈ V
7 feq1 6497 . . . . . . . 8 (𝑧 = 𝑇 → (𝑧: ℋ⟶ ℋ ↔ 𝑇: ℋ⟶ ℋ))
8 fveq1 6671 . . . . . . . . . . 11 (𝑧 = 𝑇 → (𝑧𝑦) = (𝑇𝑦))
98oveq2d 7174 . . . . . . . . . 10 (𝑧 = 𝑇 → (𝑥 ·ih (𝑧𝑦)) = (𝑥 ·ih (𝑇𝑦)))
109eqeq1d 2825 . . . . . . . . 9 (𝑧 = 𝑇 → ((𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦) ↔ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦)))
11102ralbidv 3201 . . . . . . . 8 (𝑧 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦)))
127, 113anbi13d 1434 . . . . . . 7 (𝑧 = 𝑇 → ((𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦))))
13 feq1 6497 . . . . . . . 8 (𝑤 = (adj𝑇) → (𝑤: ℋ⟶ ℋ ↔ (adj𝑇): ℋ⟶ ℋ))
14 fveq1 6671 . . . . . . . . . . 11 (𝑤 = (adj𝑇) → (𝑤𝑥) = ((adj𝑇)‘𝑥))
1514oveq1d 7173 . . . . . . . . . 10 (𝑤 = (adj𝑇) → ((𝑤𝑥) ·ih 𝑦) = (((adj𝑇)‘𝑥) ·ih 𝑦))
1615eqeq2d 2834 . . . . . . . . 9 (𝑤 = (adj𝑇) → ((𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦) ↔ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦)))
17162ralbidv 3201 . . . . . . . 8 (𝑤 = (adj𝑇) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦)))
1813, 173anbi23d 1435 . . . . . . 7 (𝑤 = (adj𝑇) → ((𝑇: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))))
1912, 18opelopabg 5427 . . . . . 6 ((𝑇 ∈ dom adj ∧ (adj𝑇) ∈ V) → (⟨𝑇, (adj𝑇)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦))} ↔ (𝑇: ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))))
206, 19mpan2 689 . . . . 5 (𝑇 ∈ dom adj → (⟨𝑇, (adj𝑇)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦))} ↔ (𝑇: ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))))
215, 20mpbid 234 . . . 4 (𝑇 ∈ dom adj → (𝑇: ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦)))
2221simp3d 1140 . . 3 (𝑇 ∈ dom adj → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))
23 oveq1 7165 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·ih (𝑇𝑦)) = (𝐴 ·ih (𝑇𝑦)))
24 fveq2 6672 . . . . . 6 (𝑥 = 𝐴 → ((adj𝑇)‘𝑥) = ((adj𝑇)‘𝐴))
2524oveq1d 7173 . . . . 5 (𝑥 = 𝐴 → (((adj𝑇)‘𝑥) ·ih 𝑦) = (((adj𝑇)‘𝐴) ·ih 𝑦))
2623, 25eqeq12d 2839 . . . 4 (𝑥 = 𝐴 → ((𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦) ↔ (𝐴 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝐴) ·ih 𝑦)))
27 fveq2 6672 . . . . . 6 (𝑦 = 𝐵 → (𝑇𝑦) = (𝑇𝐵))
2827oveq2d 7174 . . . . 5 (𝑦 = 𝐵 → (𝐴 ·ih (𝑇𝑦)) = (𝐴 ·ih (𝑇𝐵)))
29 oveq2 7166 . . . . 5 (𝑦 = 𝐵 → (((adj𝑇)‘𝐴) ·ih 𝑦) = (((adj𝑇)‘𝐴) ·ih 𝐵))
3028, 29eqeq12d 2839 . . . 4 (𝑦 = 𝐵 → ((𝐴 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝐴) ·ih 𝑦) ↔ (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵)))
3126, 30rspc2v 3635 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦) → (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵)))
3222, 31syl5com 31 . 2 (𝑇 ∈ dom adj → ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵)))
33323impib 1112 1 ((𝑇 ∈ dom adj𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  cop 4575  {copab 5130  dom cdm 5557  Fun wfun 6351  wf 6353  cfv 6357  (class class class)co 7158  chba 28698   ·ih csp 28701  adjcado 28734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-hfvadd 28779  ax-hvcom 28780  ax-hvass 28781  ax-hv0cl 28782  ax-hvaddid 28783  ax-hfvmul 28784  ax-hvmulid 28785  ax-hvdistr2 28788  ax-hvmul0 28789  ax-hfi 28858  ax-his1 28861  ax-his2 28862  ax-his3 28863  ax-his4 28864
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-2 11703  df-cj 14460  df-re 14461  df-im 14462  df-hvsub 28750  df-adjh 29628
This theorem is referenced by:  adj2  29713  adjadj  29715  hmopadj2  29720
  Copyright terms: Public domain W3C validator