HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjeq Structured version   Visualization version   GIF version

Theorem adjeq 28922
Description: A property that determines the adjoint of a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjeq ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))) → (adj𝑇) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝑇,𝑦

Proof of Theorem adjeq
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funadj 28873 . 2 Fun adj
2 df-adjh 28836 . . . . . 6 adj = {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)))}
32eleq2i 2722 . . . . 5 (⟨𝑇, 𝑆⟩ ∈ adj ↔ ⟨𝑇, 𝑆⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)))})
4 ax-hilex 27984 . . . . . . 7 ℋ ∈ V
5 fex 6530 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ ℋ ∈ V) → 𝑇 ∈ V)
64, 5mpan2 707 . . . . . 6 (𝑇: ℋ⟶ ℋ → 𝑇 ∈ V)
7 fex 6530 . . . . . . 7 ((𝑆: ℋ⟶ ℋ ∧ ℋ ∈ V) → 𝑆 ∈ V)
84, 7mpan2 707 . . . . . 6 (𝑆: ℋ⟶ ℋ → 𝑆 ∈ V)
9 feq1 6064 . . . . . . . 8 (𝑧 = 𝑇 → (𝑧: ℋ⟶ ℋ ↔ 𝑇: ℋ⟶ ℋ))
10 fveq1 6228 . . . . . . . . . . 11 (𝑧 = 𝑇 → (𝑧𝑥) = (𝑇𝑥))
1110oveq1d 6705 . . . . . . . . . 10 (𝑧 = 𝑇 → ((𝑧𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦))
1211eqeq1d 2653 . . . . . . . . 9 (𝑧 = 𝑇 → (((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)) ↔ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦))))
13122ralbidv 3018 . . . . . . . 8 (𝑧 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦))))
149, 133anbi13d 1441 . . . . . . 7 (𝑧 = 𝑇 → ((𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦))) ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)))))
15 feq1 6064 . . . . . . . 8 (𝑤 = 𝑆 → (𝑤: ℋ⟶ ℋ ↔ 𝑆: ℋ⟶ ℋ))
16 fveq1 6228 . . . . . . . . . . 11 (𝑤 = 𝑆 → (𝑤𝑦) = (𝑆𝑦))
1716oveq2d 6706 . . . . . . . . . 10 (𝑤 = 𝑆 → (𝑥 ·ih (𝑤𝑦)) = (𝑥 ·ih (𝑆𝑦)))
1817eqeq2d 2661 . . . . . . . . 9 (𝑤 = 𝑆 → (((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)) ↔ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))))
19182ralbidv 3018 . . . . . . . 8 (𝑤 = 𝑆 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))))
2015, 193anbi23d 1442 . . . . . . 7 (𝑤 = 𝑆 → ((𝑇: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦))) ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)))))
2114, 20opelopabg 5022 . . . . . 6 ((𝑇 ∈ V ∧ 𝑆 ∈ V) → (⟨𝑇, 𝑆⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)))} ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)))))
226, 8, 21syl2an 493 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) → (⟨𝑇, 𝑆⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)))} ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)))))
233, 22syl5bb 272 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) → (⟨𝑇, 𝑆⟩ ∈ adj ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)))))
24 df-3an 1056 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))) ↔ ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))))
2524baibr 965 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)))))
2623, 25bitr4d 271 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) → (⟨𝑇, 𝑆⟩ ∈ adj ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))))
2726biimp3ar 1473 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))) → ⟨𝑇, 𝑆⟩ ∈ adj)
28 funopfv 6273 . 2 (Fun adj → (⟨𝑇, 𝑆⟩ ∈ adj → (adj𝑇) = 𝑆))
291, 27, 28mpsyl 68 1 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))) → (adj𝑇) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  cop 4216  {copab 4745  Fun wfun 5920  wf 5922  cfv 5926  (class class class)co 6690  chil 27904   ·ih csp 27907  adjcado 27940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-hilex 27984  ax-hfvadd 27985  ax-hvcom 27986  ax-hvass 27987  ax-hv0cl 27988  ax-hvaddid 27989  ax-hfvmul 27990  ax-hvmulid 27991  ax-hvdistr2 27994  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his2 28068  ax-his3 28069  ax-his4 28070
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-2 11117  df-cj 13883  df-re 13884  df-im 13885  df-hvsub 27956  df-adjh 28836
This theorem is referenced by:  unopadj2  28925  hmopadj  28926  adj0  28981  adjmul  29079  adjadd  29080
  Copyright terms: Public domain W3C validator