HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjsym Structured version   Visualization version   GIF version

Theorem adjsym 29612
Description: Symmetry property of an adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjsym ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝑇,𝑦

Proof of Theorem adjsym
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ffvelrn 6851 . . . . . . . . . . . 12 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
2 ax-his1 28861 . . . . . . . . . . . 12 (((𝑇𝑦) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑦) ·ih 𝑥) = (∗‘(𝑥 ·ih (𝑇𝑦))))
31, 2sylan 582 . . . . . . . . . . 11 (((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑦) ·ih 𝑥) = (∗‘(𝑥 ·ih (𝑇𝑦))))
43adantrl 714 . . . . . . . . . 10 (((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝑇𝑦) ·ih 𝑥) = (∗‘(𝑥 ·ih (𝑇𝑦))))
5 ffvelrn 6851 . . . . . . . . . . . 12 ((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑆𝑥) ∈ ℋ)
6 ax-his1 28861 . . . . . . . . . . . 12 ((𝑦 ∈ ℋ ∧ (𝑆𝑥) ∈ ℋ) → (𝑦 ·ih (𝑆𝑥)) = (∗‘((𝑆𝑥) ·ih 𝑦)))
75, 6sylan2 594 . . . . . . . . . . 11 ((𝑦 ∈ ℋ ∧ (𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (𝑦 ·ih (𝑆𝑥)) = (∗‘((𝑆𝑥) ·ih 𝑦)))
87adantll 712 . . . . . . . . . 10 (((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (𝑦 ·ih (𝑆𝑥)) = (∗‘((𝑆𝑥) ·ih 𝑦)))
94, 8eqeq12d 2839 . . . . . . . . 9 (((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (((𝑇𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑆𝑥)) ↔ (∗‘(𝑥 ·ih (𝑇𝑦))) = (∗‘((𝑆𝑥) ·ih 𝑦))))
109ancoms 461 . . . . . . . 8 (((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑆𝑥)) ↔ (∗‘(𝑥 ·ih (𝑇𝑦))) = (∗‘((𝑆𝑥) ·ih 𝑦))))
11 hicl 28859 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇𝑦)) ∈ ℂ)
121, 11sylan2 594 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇𝑦)) ∈ ℂ)
1312adantll 712 . . . . . . . . 9 (((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇𝑦)) ∈ ℂ)
14 hicl 28859 . . . . . . . . . . 11 (((𝑆𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆𝑥) ·ih 𝑦) ∈ ℂ)
155, 14sylan 582 . . . . . . . . . 10 (((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑆𝑥) ·ih 𝑦) ∈ ℂ)
1615adantrl 714 . . . . . . . . 9 (((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆𝑥) ·ih 𝑦) ∈ ℂ)
17 cj11 14523 . . . . . . . . 9 (((𝑥 ·ih (𝑇𝑦)) ∈ ℂ ∧ ((𝑆𝑥) ·ih 𝑦) ∈ ℂ) → ((∗‘(𝑥 ·ih (𝑇𝑦))) = (∗‘((𝑆𝑥) ·ih 𝑦)) ↔ (𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦)))
1813, 16, 17syl2anc 586 . . . . . . . 8 (((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → ((∗‘(𝑥 ·ih (𝑇𝑦))) = (∗‘((𝑆𝑥) ·ih 𝑦)) ↔ (𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦)))
1910, 18bitr2d 282 . . . . . . 7 (((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦) ↔ ((𝑇𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑆𝑥))))
2019an4s 658 . . . . . 6 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦) ↔ ((𝑇𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑆𝑥))))
2120anassrs 470 . . . . 5 ((((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦) ↔ ((𝑇𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑆𝑥))))
22 eqcom 2830 . . . . 5 (((𝑇𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑆𝑥)) ↔ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥))
2321, 22syl6bb 289 . . . 4 ((((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦) ↔ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥)))
2423ralbidva 3198 . . 3 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦) ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥)))
2524ralbidva 3198 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥)))
26 ralcom 3356 . . . 4 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦))
27 fveq2 6672 . . . . . . . 8 (𝑧 = 𝑦 → (𝑆𝑧) = (𝑆𝑦))
2827oveq2d 7174 . . . . . . 7 (𝑧 = 𝑦 → (𝑥 ·ih (𝑆𝑧)) = (𝑥 ·ih (𝑆𝑦)))
29 oveq2 7166 . . . . . . 7 (𝑧 = 𝑦 → ((𝑇𝑥) ·ih 𝑧) = ((𝑇𝑥) ·ih 𝑦))
3028, 29eqeq12d 2839 . . . . . 6 (𝑧 = 𝑦 → ((𝑥 ·ih (𝑆𝑧)) = ((𝑇𝑥) ·ih 𝑧) ↔ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦)))
3130ralbidv 3199 . . . . 5 (𝑧 = 𝑦 → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑧)) = ((𝑇𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦)))
3231cbvralvw 3451 . . . 4 (∀𝑧 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑧)) = ((𝑇𝑥) ·ih 𝑧) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦))
3326, 32bitr4i 280 . . 3 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦) ↔ ∀𝑧 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑧)) = ((𝑇𝑥) ·ih 𝑧))
34 oveq1 7165 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ·ih (𝑆𝑧)) = (𝑦 ·ih (𝑆𝑧)))
35 fveq2 6672 . . . . . . 7 (𝑥 = 𝑦 → (𝑇𝑥) = (𝑇𝑦))
3635oveq1d 7173 . . . . . 6 (𝑥 = 𝑦 → ((𝑇𝑥) ·ih 𝑧) = ((𝑇𝑦) ·ih 𝑧))
3734, 36eqeq12d 2839 . . . . 5 (𝑥 = 𝑦 → ((𝑥 ·ih (𝑆𝑧)) = ((𝑇𝑥) ·ih 𝑧) ↔ (𝑦 ·ih (𝑆𝑧)) = ((𝑇𝑦) ·ih 𝑧)))
3837cbvralvw 3451 . . . 4 (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑧)) = ((𝑇𝑥) ·ih 𝑧) ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑧)) = ((𝑇𝑦) ·ih 𝑧))
3938ralbii 3167 . . 3 (∀𝑧 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑧)) = ((𝑇𝑥) ·ih 𝑧) ↔ ∀𝑧 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑧)) = ((𝑇𝑦) ·ih 𝑧))
40 fveq2 6672 . . . . . . 7 (𝑧 = 𝑥 → (𝑆𝑧) = (𝑆𝑥))
4140oveq2d 7174 . . . . . 6 (𝑧 = 𝑥 → (𝑦 ·ih (𝑆𝑧)) = (𝑦 ·ih (𝑆𝑥)))
42 oveq2 7166 . . . . . 6 (𝑧 = 𝑥 → ((𝑇𝑦) ·ih 𝑧) = ((𝑇𝑦) ·ih 𝑥))
4341, 42eqeq12d 2839 . . . . 5 (𝑧 = 𝑥 → ((𝑦 ·ih (𝑆𝑧)) = ((𝑇𝑦) ·ih 𝑧) ↔ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥)))
4443ralbidv 3199 . . . 4 (𝑧 = 𝑥 → (∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑧)) = ((𝑇𝑦) ·ih 𝑧) ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥)))
4544cbvralvw 3451 . . 3 (∀𝑧 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑧)) = ((𝑇𝑦) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥))
4633, 39, 453bitri 299 . 2 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥))
4725, 46syl6rbbr 292 1 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  ccj 14457  chba 28698   ·ih csp 28701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-hfi 28858  ax-his1 28861
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-2 11703  df-cj 14460  df-re 14461  df-im 14462
This theorem is referenced by:  dfadj2  29664  adjval2  29670  cnlnadjeui  29856  cnlnssadj  29859  adjbdln  29862
  Copyright terms: Public domain W3C validator