MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  advlog Structured version   Visualization version   GIF version

Theorem advlog 24620
Description: The antiderivative of the logarithm. (Contributed by Mario Carneiro, 21-May-2016.)
Assertion
Ref Expression
advlog (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))

Proof of Theorem advlog
StepHypRef Expression
1 reelprrecn 10240 . . . . 5 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . . 4 (⊤ → ℝ ∈ {ℝ, ℂ})
3 rpre 12052 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
43adantl 473 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
54recnd 10280 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
6 1cnd 10268 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
7 recn 10238 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
87adantl 473 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
9 1red 10267 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
102dvmptid 23939 . . . . 5 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
11 rpssre 12056 . . . . . 6 + ⊆ ℝ
1211a1i 11 . . . . 5 (⊤ → ℝ+ ⊆ ℝ)
13 eqid 2760 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1413tgioo2 22827 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
15 ioorp 12464 . . . . . . 7 (0(,)+∞) = ℝ+
16 iooretop 22790 . . . . . . 7 (0(,)+∞) ∈ (topGen‘ran (,))
1715, 16eqeltrri 2836 . . . . . 6 + ∈ (topGen‘ran (,))
1817a1i 11 . . . . 5 (⊤ → ℝ+ ∈ (topGen‘ran (,)))
192, 8, 9, 10, 12, 14, 13, 18dvmptres 23945 . . . 4 (⊤ → (ℝ D (𝑥 ∈ ℝ+𝑥)) = (𝑥 ∈ ℝ+ ↦ 1))
20 relogcl 24542 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
2120adantl 473 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
22 peano2rem 10560 . . . . . 6 ((log‘𝑥) ∈ ℝ → ((log‘𝑥) − 1) ∈ ℝ)
2321, 22syl 17 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − 1) ∈ ℝ)
2423recnd 10280 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − 1) ∈ ℂ)
25 rpreccl 12070 . . . . . 6 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
2625adantl 473 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
2726rpcnd 12087 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
2821recnd 10280 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
29 dvrelog 24603 . . . . . . 7 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
30 relogf1o 24533 . . . . . . . . . . 11 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
31 f1of 6299 . . . . . . . . . . 11 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
3230, 31mp1i 13 . . . . . . . . . 10 (⊤ → (log ↾ ℝ+):ℝ+⟶ℝ)
3332feqmptd 6412 . . . . . . . . 9 (⊤ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)))
34 fvres 6369 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥))
3534mpteq2ia 4892 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
3633, 35syl6eq 2810 . . . . . . . 8 (⊤ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
3736oveq2d 6830 . . . . . . 7 (⊤ → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))))
3829, 37syl5reqr 2809 . . . . . 6 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
39 0cnd 10245 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℂ)
40 1cnd 10268 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
41 0cnd 10245 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 0 ∈ ℂ)
42 1cnd 10268 . . . . . . . 8 (⊤ → 1 ∈ ℂ)
432, 42dvmptc 23940 . . . . . . 7 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 1)) = (𝑥 ∈ ℝ ↦ 0))
442, 40, 41, 43, 12, 14, 13, 18dvmptres 23945 . . . . . 6 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ 1)) = (𝑥 ∈ ℝ+ ↦ 0))
452, 28, 27, 38, 6, 39, 44dvmptsub 23949 . . . . 5 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − 1))) = (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) − 0)))
4627subid1d 10593 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 / 𝑥) − 0) = (1 / 𝑥))
4746mpteq2dva 4896 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) − 0)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
4845, 47eqtrd 2794 . . . 4 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − 1))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
492, 5, 6, 19, 24, 27, 48dvmptmul 23943 . . 3 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥))))
5024mulid2d 10270 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 · ((log‘𝑥) − 1)) = ((log‘𝑥) − 1))
51 rpne0 12061 . . . . . . . 8 (𝑥 ∈ ℝ+𝑥 ≠ 0)
5251adantl 473 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
535, 52recid2d 11009 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 / 𝑥) · 𝑥) = 1)
5450, 53oveq12d 6832 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)) = (((log‘𝑥) − 1) + 1))
55 ax-1cn 10206 . . . . . 6 1 ∈ ℂ
56 npcan 10502 . . . . . 6 (((log‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ) → (((log‘𝑥) − 1) + 1) = (log‘𝑥))
5728, 55, 56sylancl 697 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) − 1) + 1) = (log‘𝑥))
5854, 57eqtrd 2794 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)) = (log‘𝑥))
5958mpteq2dva 4896 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
6049, 59eqtrd 2794 . 2 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
6160trud 1642 1 (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1632  wtru 1633  wcel 2139  wne 2932  wss 3715  {cpr 4323  cmpt 4881  ran crn 5267  cres 5268  wf 6045  1-1-ontowf1o 6048  cfv 6049  (class class class)co 6814  cc 10146  cr 10147  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153  +∞cpnf 10283  cmin 10478   / cdiv 10896  +crp 12045  (,)cioo 12388  TopOpenctopn 16304  topGenctg 16320  fldccnfld 19968   D cdv 23846  logclog 24521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ioc 12393  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-mod 12883  df-seq 13016  df-exp 13075  df-fac 13275  df-bc 13304  df-hash 13332  df-shft 14026  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-sum 14636  df-ef 15017  df-sin 15019  df-cos 15020  df-pi 15022  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-cmp 21412  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cncf 22902  df-limc 23849  df-dv 23850  df-log 24523
This theorem is referenced by:  logfacbnd3  25168
  Copyright terms: Public domain W3C validator