![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv0fv0 | Structured version Visualization version GIF version |
Description: If the value of the alternative function at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
afv0fv0 | ⊢ ((𝐹'''𝐴) = ∅ → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4940 | . . 3 ⊢ ∅ ∈ V | |
2 | eleq1a 2832 | . . 3 ⊢ (∅ ∈ V → ((𝐹'''𝐴) = ∅ → (𝐹'''𝐴) ∈ V)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐹'''𝐴) = ∅ → (𝐹'''𝐴) ∈ V) |
4 | afvvfveq 41732 | . . 3 ⊢ ((𝐹'''𝐴) ∈ V → (𝐹'''𝐴) = (𝐹‘𝐴)) | |
5 | eqeq1 2762 | . . . 4 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹'''𝐴) = ∅ ↔ (𝐹‘𝐴) = ∅)) | |
6 | 5 | biimpd 219 | . . 3 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹'''𝐴) = ∅ → (𝐹‘𝐴) = ∅)) |
7 | 4, 6 | syl 17 | . 2 ⊢ ((𝐹'''𝐴) ∈ V → ((𝐹'''𝐴) = ∅ → (𝐹‘𝐴) = ∅)) |
8 | 3, 7 | mpcom 38 | 1 ⊢ ((𝐹'''𝐴) = ∅ → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2137 Vcvv 3338 ∅c0 4056 ‘cfv 6047 '''cafv 41698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-rab 3057 df-v 3340 df-dif 3716 df-un 3718 df-nul 4057 df-if 4229 df-fv 6055 df-afv 41701 |
This theorem is referenced by: afvfv0bi 41736 aov0ov0 41777 |
Copyright terms: Public domain | W3C validator |