Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aisbbisfaisf Structured version   Visualization version   GIF version

Theorem aisbbisfaisf 43129
Description: Given a is equivalent to b, b is equivalent to there exists a proof for a is equivalent to F. (Contributed by Jarvin Udandy, 30-Aug-2016.)
Hypotheses
Ref Expression
aisbbisfaisf.1 (𝜑𝜓)
aisbbisfaisf.2 (𝜓 ↔ ⊥)
Assertion
Ref Expression
aisbbisfaisf (𝜑 ↔ ⊥)

Proof of Theorem aisbbisfaisf
StepHypRef Expression
1 aisbbisfaisf.1 . 2 (𝜑𝜓)
2 aisbbisfaisf.2 . 2 (𝜓 ↔ ⊥)
31, 2bitri 277 1 (𝜑 ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wfal 1543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 209
This theorem is referenced by:  mdandysum2p2e4  43226
  Copyright terms: Public domain W3C validator