Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ajval Structured version   Visualization version   GIF version

Theorem ajval 27845
 Description: Value of the adjoint function. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
ajval.1 𝑋 = (BaseSet‘𝑈)
ajval.2 𝑌 = (BaseSet‘𝑊)
ajval.3 𝑃 = (·𝑖OLD𝑈)
ajval.4 𝑄 = (·𝑖OLD𝑊)
ajval.5 𝐴 = (𝑈adj𝑊)
Assertion
Ref Expression
ajval ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝐴𝑇) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
Distinct variable groups:   𝑥,𝑠,𝑦,𝑇   𝑈,𝑠,𝑥,𝑦   𝑊,𝑠,𝑥,𝑦   𝑋,𝑠,𝑥,𝑦   𝑌,𝑠,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑠)   𝑃(𝑥,𝑦,𝑠)   𝑄(𝑥,𝑦,𝑠)   𝑌(𝑥)

Proof of Theorem ajval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 phnv 27797 . . . . 5 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
2 ajval.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
3 ajval.2 . . . . . 6 𝑌 = (BaseSet‘𝑊)
4 ajval.3 . . . . . 6 𝑃 = (·𝑖OLD𝑈)
5 ajval.4 . . . . . 6 𝑄 = (·𝑖OLD𝑊)
6 ajval.5 . . . . . 6 𝐴 = (𝑈adj𝑊)
72, 3, 4, 5, 6ajfval 27792 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐴 = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))})
81, 7sylan 487 . . . 4 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec) → 𝐴 = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))})
98fveq1d 6231 . . 3 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec) → (𝐴𝑇) = ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇))
1093adant3 1101 . 2 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝐴𝑇) = ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇))
11 fvex 6239 . . . . . . 7 (BaseSet‘𝑈) ∈ V
122, 11eqeltri 2726 . . . . . 6 𝑋 ∈ V
13 fex 6530 . . . . . 6 ((𝑇:𝑋𝑌𝑋 ∈ V) → 𝑇 ∈ V)
1412, 13mpan2 707 . . . . 5 (𝑇:𝑋𝑌𝑇 ∈ V)
15 eqid 2651 . . . . . 6 {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))} = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}
16 feq1 6064 . . . . . . 7 (𝑡 = 𝑇 → (𝑡:𝑋𝑌𝑇:𝑋𝑌))
17 fveq1 6228 . . . . . . . . . 10 (𝑡 = 𝑇 → (𝑡𝑥) = (𝑇𝑥))
1817oveq1d 6705 . . . . . . . . 9 (𝑡 = 𝑇 → ((𝑡𝑥)𝑄𝑦) = ((𝑇𝑥)𝑄𝑦))
1918eqeq1d 2653 . . . . . . . 8 (𝑡 = 𝑇 → (((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)) ↔ ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))))
20192ralbidv 3018 . . . . . . 7 (𝑡 = 𝑇 → (∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)) ↔ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))))
2116, 203anbi13d 1441 . . . . . 6 (𝑡 = 𝑇 → ((𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))) ↔ (𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2215, 21fvopab5 6349 . . . . 5 (𝑇 ∈ V → ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇) = (℩𝑠(𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2314, 22syl 17 . . . 4 (𝑇:𝑋𝑌 → ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇) = (℩𝑠(𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
24 3anass 1059 . . . . . 6 ((𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))) ↔ (𝑇:𝑋𝑌 ∧ (𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2524baib 964 . . . . 5 (𝑇:𝑋𝑌 → ((𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))) ↔ (𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2625iotabidv 5910 . . . 4 (𝑇:𝑋𝑌 → (℩𝑠(𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2723, 26eqtrd 2685 . . 3 (𝑇:𝑋𝑌 → ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
28273ad2ant3 1104 . 2 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2910, 28eqtrd 2685 1 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝐴𝑇) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∀wral 2941  Vcvv 3231  {copab 4745  ℩cio 5887  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  NrmCVeccnv 27567  BaseSetcba 27569  ·𝑖OLDcdip 27683  adjcaj 27731  CPreHilOLDccphlo 27795 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-map 7901  df-aj 27733  df-ph 27796 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator