MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ajval Structured version   Visualization version   GIF version

Theorem ajval 28641
Description: Value of the adjoint function. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
ajval.1 𝑋 = (BaseSet‘𝑈)
ajval.2 𝑌 = (BaseSet‘𝑊)
ajval.3 𝑃 = (·𝑖OLD𝑈)
ajval.4 𝑄 = (·𝑖OLD𝑊)
ajval.5 𝐴 = (𝑈adj𝑊)
Assertion
Ref Expression
ajval ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝐴𝑇) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
Distinct variable groups:   𝑥,𝑠,𝑦,𝑇   𝑈,𝑠,𝑥,𝑦   𝑊,𝑠,𝑥,𝑦   𝑋,𝑠,𝑥,𝑦   𝑌,𝑠,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑠)   𝑃(𝑥,𝑦,𝑠)   𝑄(𝑥,𝑦,𝑠)   𝑌(𝑥)

Proof of Theorem ajval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 phnv 28594 . . . . 5 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
2 ajval.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
3 ajval.2 . . . . . 6 𝑌 = (BaseSet‘𝑊)
4 ajval.3 . . . . . 6 𝑃 = (·𝑖OLD𝑈)
5 ajval.4 . . . . . 6 𝑄 = (·𝑖OLD𝑊)
6 ajval.5 . . . . . 6 𝐴 = (𝑈adj𝑊)
72, 3, 4, 5, 6ajfval 28589 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐴 = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))})
81, 7sylan 582 . . . 4 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec) → 𝐴 = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))})
98fveq1d 6675 . . 3 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec) → (𝐴𝑇) = ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇))
1093adant3 1128 . 2 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝐴𝑇) = ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇))
112fvexi 6687 . . . . . 6 𝑋 ∈ V
12 fex 6992 . . . . . 6 ((𝑇:𝑋𝑌𝑋 ∈ V) → 𝑇 ∈ V)
1311, 12mpan2 689 . . . . 5 (𝑇:𝑋𝑌𝑇 ∈ V)
14 eqid 2824 . . . . . 6 {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))} = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}
15 feq1 6498 . . . . . . 7 (𝑡 = 𝑇 → (𝑡:𝑋𝑌𝑇:𝑋𝑌))
16 fveq1 6672 . . . . . . . . . 10 (𝑡 = 𝑇 → (𝑡𝑥) = (𝑇𝑥))
1716oveq1d 7174 . . . . . . . . 9 (𝑡 = 𝑇 → ((𝑡𝑥)𝑄𝑦) = ((𝑇𝑥)𝑄𝑦))
1817eqeq1d 2826 . . . . . . . 8 (𝑡 = 𝑇 → (((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)) ↔ ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))))
19182ralbidv 3202 . . . . . . 7 (𝑡 = 𝑇 → (∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)) ↔ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))))
2015, 193anbi13d 1434 . . . . . 6 (𝑡 = 𝑇 → ((𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))) ↔ (𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2114, 20fvopab5 6803 . . . . 5 (𝑇 ∈ V → ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇) = (℩𝑠(𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2213, 21syl 17 . . . 4 (𝑇:𝑋𝑌 → ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇) = (℩𝑠(𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
23 3anass 1091 . . . . . 6 ((𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))) ↔ (𝑇:𝑋𝑌 ∧ (𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2423baib 538 . . . . 5 (𝑇:𝑋𝑌 → ((𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))) ↔ (𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2524iotabidv 6342 . . . 4 (𝑇:𝑋𝑌 → (℩𝑠(𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2622, 25eqtrd 2859 . . 3 (𝑇:𝑋𝑌 → ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
27263ad2ant3 1131 . 2 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2810, 27eqtrd 2859 1 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝐴𝑇) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  Vcvv 3497  {copab 5131  cio 6315  wf 6354  cfv 6358  (class class class)co 7159  NrmCVeccnv 28364  BaseSetcba 28366  ·𝑖OLDcdip 28480  adjcaj 28528  CPreHilOLDccphlo 28592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-map 8411  df-aj 28530  df-ph 28593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator