MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephfnon Structured version   Visualization version   GIF version

Theorem alephfnon 9494
Description: The aleph function is a function on the class of ordinal numbers. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
Assertion
Ref Expression
alephfnon ℵ Fn On

Proof of Theorem alephfnon
StepHypRef Expression
1 rdgfnon 8057 . 2 rec(har, ω) Fn On
2 df-aleph 9372 . . 3 ℵ = rec(har, ω)
32fneq1i 6453 . 2 (ℵ Fn On ↔ rec(har, ω) Fn On)
41, 3mpbir 233 1 ℵ Fn On
Colors of variables: wff setvar class
Syntax hints:  Oncon0 6194   Fn wfn 6353  ωcom 7583  reccrdg 8048  harchar 9023  cale 9368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-aleph 9372
This theorem is referenced by:  alephon  9498  alephcard  9499  alephnbtwn  9500  alephgeom  9511  alephf1  9514  infenaleph  9520  isinfcard  9521  alephiso  9527  alephsmo  9531  alephf1ALT  9532  alephfplem1  9533  alephfplem3  9535  alephsing  9701  alephadd  10002  alephreg  10007  pwcfsdom  10008  cfpwsdom  10009  gch2  10100  gch3  10101
  Copyright terms: Public domain W3C validator