MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephgch Structured version   Visualization version   GIF version

Theorem alephgch 10084
Description: If (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴), then (ℵ‘𝐴) is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
alephgch ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → (ℵ‘𝐴) ∈ GCH)

Proof of Theorem alephgch
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 alephnbtwn2 9486 . . . . 5 ¬ ((ℵ‘𝐴) ≺ 𝑥𝑥 ≺ (ℵ‘suc 𝐴))
2 sdomen2 8650 . . . . . 6 ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → (𝑥 ≺ (ℵ‘suc 𝐴) ↔ 𝑥 ≺ 𝒫 (ℵ‘𝐴)))
32anbi2d 628 . . . . 5 ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → (((ℵ‘𝐴) ≺ 𝑥𝑥 ≺ (ℵ‘suc 𝐴)) ↔ ((ℵ‘𝐴) ≺ 𝑥𝑥 ≺ 𝒫 (ℵ‘𝐴))))
41, 3mtbii 327 . . . 4 ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → ¬ ((ℵ‘𝐴) ≺ 𝑥𝑥 ≺ 𝒫 (ℵ‘𝐴)))
54alrimiv 1919 . . 3 ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → ∀𝑥 ¬ ((ℵ‘𝐴) ≺ 𝑥𝑥 ≺ 𝒫 (ℵ‘𝐴)))
65olcd 870 . 2 ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → ((ℵ‘𝐴) ∈ Fin ∨ ∀𝑥 ¬ ((ℵ‘𝐴) ≺ 𝑥𝑥 ≺ 𝒫 (ℵ‘𝐴))))
7 fvex 6676 . . 3 (ℵ‘𝐴) ∈ V
8 elgch 10032 . . 3 ((ℵ‘𝐴) ∈ V → ((ℵ‘𝐴) ∈ GCH ↔ ((ℵ‘𝐴) ∈ Fin ∨ ∀𝑥 ¬ ((ℵ‘𝐴) ≺ 𝑥𝑥 ≺ 𝒫 (ℵ‘𝐴)))))
97, 8ax-mp 5 . 2 ((ℵ‘𝐴) ∈ GCH ↔ ((ℵ‘𝐴) ∈ Fin ∨ ∀𝑥 ¬ ((ℵ‘𝐴) ≺ 𝑥𝑥 ≺ 𝒫 (ℵ‘𝐴))))
106, 9sylibr 235 1 ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → (ℵ‘𝐴) ∈ GCH)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 841  wal 1526  wcel 2105  Vcvv 3492  𝒫 cpw 4535   class class class wbr 5057  suc csuc 6186  cfv 6348  cen 8494  csdm 8496  Fincfn 8497  cale 9353  GCHcgch 10030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-oi 8962  df-har 9010  df-card 9356  df-aleph 9357  df-gch 10031
This theorem is referenced by:  gch3  10086
  Copyright terms: Public domain W3C validator