MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephval3 Structured version   Visualization version   GIF version

Theorem alephval3 9538
Description: An alternate way to express the value of the aleph function: it is the least infinite cardinal different from all values at smaller arguments. Definition of aleph in [Enderton] p. 212 and definition of aleph in [BellMachover] p. 490 . (Contributed by NM, 16-Nov-2003.)
Assertion
Ref Expression
alephval3 (𝐴 ∈ On → (ℵ‘𝐴) = {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))})
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem alephval3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 alephcard 9498 . . . 4 (card‘(ℵ‘𝐴)) = (ℵ‘𝐴)
21a1i 11 . . 3 (𝐴 ∈ On → (card‘(ℵ‘𝐴)) = (ℵ‘𝐴))
3 alephgeom 9510 . . . 4 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
43biimpi 218 . . 3 (𝐴 ∈ On → ω ⊆ (ℵ‘𝐴))
5 alephord2i 9505 . . . . 5 (𝐴 ∈ On → (𝑦𝐴 → (ℵ‘𝑦) ∈ (ℵ‘𝐴)))
6 elirr 9063 . . . . . . 7 ¬ (ℵ‘𝑦) ∈ (ℵ‘𝑦)
7 eleq2 2903 . . . . . . 7 ((ℵ‘𝐴) = (ℵ‘𝑦) → ((ℵ‘𝑦) ∈ (ℵ‘𝐴) ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑦)))
86, 7mtbiri 329 . . . . . 6 ((ℵ‘𝐴) = (ℵ‘𝑦) → ¬ (ℵ‘𝑦) ∈ (ℵ‘𝐴))
98con2i 141 . . . . 5 ((ℵ‘𝑦) ∈ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) = (ℵ‘𝑦))
105, 9syl6 35 . . . 4 (𝐴 ∈ On → (𝑦𝐴 → ¬ (ℵ‘𝐴) = (ℵ‘𝑦)))
1110ralrimiv 3183 . . 3 (𝐴 ∈ On → ∀𝑦𝐴 ¬ (ℵ‘𝐴) = (ℵ‘𝑦))
12 fvex 6685 . . . 4 (ℵ‘𝐴) ∈ V
13 fveq2 6672 . . . . . 6 (𝑥 = (ℵ‘𝐴) → (card‘𝑥) = (card‘(ℵ‘𝐴)))
14 id 22 . . . . . 6 (𝑥 = (ℵ‘𝐴) → 𝑥 = (ℵ‘𝐴))
1513, 14eqeq12d 2839 . . . . 5 (𝑥 = (ℵ‘𝐴) → ((card‘𝑥) = 𝑥 ↔ (card‘(ℵ‘𝐴)) = (ℵ‘𝐴)))
16 sseq2 3995 . . . . 5 (𝑥 = (ℵ‘𝐴) → (ω ⊆ 𝑥 ↔ ω ⊆ (ℵ‘𝐴)))
17 eqeq1 2827 . . . . . . 7 (𝑥 = (ℵ‘𝐴) → (𝑥 = (ℵ‘𝑦) ↔ (ℵ‘𝐴) = (ℵ‘𝑦)))
1817notbid 320 . . . . . 6 (𝑥 = (ℵ‘𝐴) → (¬ 𝑥 = (ℵ‘𝑦) ↔ ¬ (ℵ‘𝐴) = (ℵ‘𝑦)))
1918ralbidv 3199 . . . . 5 (𝑥 = (ℵ‘𝐴) → (∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦) ↔ ∀𝑦𝐴 ¬ (ℵ‘𝐴) = (ℵ‘𝑦)))
2015, 16, 193anbi123d 1432 . . . 4 (𝑥 = (ℵ‘𝐴) → (((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦)) ↔ ((card‘(ℵ‘𝐴)) = (ℵ‘𝐴) ∧ ω ⊆ (ℵ‘𝐴) ∧ ∀𝑦𝐴 ¬ (ℵ‘𝐴) = (ℵ‘𝑦))))
2112, 20elab 3669 . . 3 ((ℵ‘𝐴) ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ↔ ((card‘(ℵ‘𝐴)) = (ℵ‘𝐴) ∧ ω ⊆ (ℵ‘𝐴) ∧ ∀𝑦𝐴 ¬ (ℵ‘𝐴) = (ℵ‘𝑦)))
222, 4, 11, 21syl3anbrc 1339 . 2 (𝐴 ∈ On → (ℵ‘𝐴) ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))})
23 eleq1 2902 . . . . . . . . . . . . . . 15 (𝑧 = (ℵ‘𝑦) → (𝑧 ∈ (ℵ‘𝐴) ↔ (ℵ‘𝑦) ∈ (ℵ‘𝐴)))
24 alephord2 9504 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦𝐴 ↔ (ℵ‘𝑦) ∈ (ℵ‘𝐴)))
2524bicomd 225 . . . . . . . . . . . . . . 15 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → ((ℵ‘𝑦) ∈ (ℵ‘𝐴) ↔ 𝑦𝐴))
2623, 25sylan9bbr 513 . . . . . . . . . . . . . 14 (((𝑦 ∈ On ∧ 𝐴 ∈ On) ∧ 𝑧 = (ℵ‘𝑦)) → (𝑧 ∈ (ℵ‘𝐴) ↔ 𝑦𝐴))
2726biimpcd 251 . . . . . . . . . . . . 13 (𝑧 ∈ (ℵ‘𝐴) → (((𝑦 ∈ On ∧ 𝐴 ∈ On) ∧ 𝑧 = (ℵ‘𝑦)) → 𝑦𝐴))
28 simpr 487 . . . . . . . . . . . . 13 (((𝑦 ∈ On ∧ 𝐴 ∈ On) ∧ 𝑧 = (ℵ‘𝑦)) → 𝑧 = (ℵ‘𝑦))
2927, 28jca2 516 . . . . . . . . . . . 12 (𝑧 ∈ (ℵ‘𝐴) → (((𝑦 ∈ On ∧ 𝐴 ∈ On) ∧ 𝑧 = (ℵ‘𝑦)) → (𝑦𝐴𝑧 = (ℵ‘𝑦))))
3029exp4c 435 . . . . . . . . . . 11 (𝑧 ∈ (ℵ‘𝐴) → (𝑦 ∈ On → (𝐴 ∈ On → (𝑧 = (ℵ‘𝑦) → (𝑦𝐴𝑧 = (ℵ‘𝑦))))))
3130com3r 87 . . . . . . . . . 10 (𝐴 ∈ On → (𝑧 ∈ (ℵ‘𝐴) → (𝑦 ∈ On → (𝑧 = (ℵ‘𝑦) → (𝑦𝐴𝑧 = (ℵ‘𝑦))))))
3231imp4b 424 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑧 ∈ (ℵ‘𝐴)) → ((𝑦 ∈ On ∧ 𝑧 = (ℵ‘𝑦)) → (𝑦𝐴𝑧 = (ℵ‘𝑦))))
3332reximdv2 3273 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑧 ∈ (ℵ‘𝐴)) → (∃𝑦 ∈ On 𝑧 = (ℵ‘𝑦) → ∃𝑦𝐴 𝑧 = (ℵ‘𝑦)))
34 cardalephex 9518 . . . . . . . . 9 (ω ⊆ 𝑧 → ((card‘𝑧) = 𝑧 ↔ ∃𝑦 ∈ On 𝑧 = (ℵ‘𝑦)))
3534biimpac 481 . . . . . . . 8 (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧) → ∃𝑦 ∈ On 𝑧 = (ℵ‘𝑦))
3633, 35impel 508 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑧 ∈ (ℵ‘𝐴)) ∧ ((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧)) → ∃𝑦𝐴 𝑧 = (ℵ‘𝑦))
37 dfrex2 3241 . . . . . . 7 (∃𝑦𝐴 𝑧 = (ℵ‘𝑦) ↔ ¬ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦))
3836, 37sylib 220 . . . . . 6 (((𝐴 ∈ On ∧ 𝑧 ∈ (ℵ‘𝐴)) ∧ ((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧)) → ¬ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦))
39 nan 827 . . . . . 6 (((𝐴 ∈ On ∧ 𝑧 ∈ (ℵ‘𝐴)) → ¬ (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧) ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦))) ↔ (((𝐴 ∈ On ∧ 𝑧 ∈ (ℵ‘𝐴)) ∧ ((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧)) → ¬ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)))
4038, 39mpbir 233 . . . . 5 ((𝐴 ∈ On ∧ 𝑧 ∈ (ℵ‘𝐴)) → ¬ (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧) ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)))
4140ex 415 . . . 4 (𝐴 ∈ On → (𝑧 ∈ (ℵ‘𝐴) → ¬ (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧) ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦))))
42 vex 3499 . . . . . . 7 𝑧 ∈ V
43 fveq2 6672 . . . . . . . . 9 (𝑥 = 𝑧 → (card‘𝑥) = (card‘𝑧))
44 id 22 . . . . . . . . 9 (𝑥 = 𝑧𝑥 = 𝑧)
4543, 44eqeq12d 2839 . . . . . . . 8 (𝑥 = 𝑧 → ((card‘𝑥) = 𝑥 ↔ (card‘𝑧) = 𝑧))
46 sseq2 3995 . . . . . . . 8 (𝑥 = 𝑧 → (ω ⊆ 𝑥 ↔ ω ⊆ 𝑧))
47 eqeq1 2827 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 = (ℵ‘𝑦) ↔ 𝑧 = (ℵ‘𝑦)))
4847notbid 320 . . . . . . . . 9 (𝑥 = 𝑧 → (¬ 𝑥 = (ℵ‘𝑦) ↔ ¬ 𝑧 = (ℵ‘𝑦)))
4948ralbidv 3199 . . . . . . . 8 (𝑥 = 𝑧 → (∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦) ↔ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)))
5045, 46, 493anbi123d 1432 . . . . . . 7 (𝑥 = 𝑧 → (((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦)) ↔ ((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧 ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦))))
5142, 50elab 3669 . . . . . 6 (𝑧 ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ↔ ((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧 ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)))
52 df-3an 1085 . . . . . 6 (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧 ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)) ↔ (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧) ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)))
5351, 52bitri 277 . . . . 5 (𝑧 ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ↔ (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧) ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)))
5453notbii 322 . . . 4 𝑧 ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ↔ ¬ (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧) ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)))
5541, 54syl6ibr 254 . . 3 (𝐴 ∈ On → (𝑧 ∈ (ℵ‘𝐴) → ¬ 𝑧 ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))}))
5655ralrimiv 3183 . 2 (𝐴 ∈ On → ∀𝑧 ∈ (ℵ‘𝐴) ¬ 𝑧 ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))})
57 cardon 9375 . . . . . 6 (card‘𝑥) ∈ On
58 eleq1 2902 . . . . . 6 ((card‘𝑥) = 𝑥 → ((card‘𝑥) ∈ On ↔ 𝑥 ∈ On))
5957, 58mpbii 235 . . . . 5 ((card‘𝑥) = 𝑥𝑥 ∈ On)
60593ad2ant1 1129 . . . 4 (((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦)) → 𝑥 ∈ On)
6160abssi 4048 . . 3 {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ⊆ On
62 oneqmini 6244 . . 3 ({𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ⊆ On → (((ℵ‘𝐴) ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ∧ ∀𝑧 ∈ (ℵ‘𝐴) ¬ 𝑧 ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))}) → (ℵ‘𝐴) = {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))}))
6361, 62ax-mp 5 . 2 (((ℵ‘𝐴) ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ∧ ∀𝑧 ∈ (ℵ‘𝐴) ¬ 𝑧 ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))}) → (ℵ‘𝐴) = {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))})
6422, 56, 63syl2anc 586 1 (𝐴 ∈ On → (ℵ‘𝐴) = {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  {cab 2801  wral 3140  wrex 3141  wss 3938   cint 4878  Oncon0 6193  cfv 6357  ωcom 7582  cardccrd 9366  cale 9367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-reg 9058  ax-inf2 9106
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-oi 8976  df-har 9024  df-card 9370  df-aleph 9371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator