MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsublem Structured version   Visualization version   GIF version

Theorem alexsublem 22654
Description: Lemma for alexsub 22655. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
alexsub.1 (𝜑𝑋 ∈ UFL)
alexsub.2 (𝜑𝑋 = 𝐵)
alexsub.3 (𝜑𝐽 = (topGen‘(fi‘𝐵)))
alexsub.4 ((𝜑 ∧ (𝑥𝐵𝑋 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)
alexsub.5 (𝜑𝐹 ∈ (UFil‘𝑋))
alexsub.6 (𝜑 → (𝐽 fLim 𝐹) = ∅)
Assertion
Ref Expression
alexsublem ¬ 𝜑
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝐹,𝑦

Proof of Theorem alexsublem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eldif 3948 . . . . . . . . . 10 (𝑥 ∈ (𝑋 (𝐵𝐹)) ↔ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹)))
2 alexsub.3 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽 = (topGen‘(fi‘𝐵)))
32eleq2d 2900 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦𝐽𝑦 ∈ (topGen‘(fi‘𝐵))))
43anbi1d 631 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑦𝐽𝑥𝑦) ↔ (𝑦 ∈ (topGen‘(fi‘𝐵)) ∧ 𝑥𝑦)))
54biimpa 479 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦𝐽𝑥𝑦)) → (𝑦 ∈ (topGen‘(fi‘𝐵)) ∧ 𝑥𝑦))
65adantlr 713 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → (𝑦 ∈ (topGen‘(fi‘𝐵)) ∧ 𝑥𝑦))
7 tg2 21575 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ (topGen‘(fi‘𝐵)) ∧ 𝑥𝑦) → ∃𝑧 ∈ (fi‘𝐵)(𝑥𝑧𝑧𝑦))
86, 7syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → ∃𝑧 ∈ (fi‘𝐵)(𝑥𝑧𝑧𝑦))
9 alexsub.5 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ (UFil‘𝑋))
10 ufilfil 22514 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
119, 10syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ (Fil‘𝑋))
1211ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝐹 ∈ (Fil‘𝑋))
13 alexsub.2 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑋 = 𝐵)
149elfvexd 6706 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑋 ∈ V)
1513, 14eqeltrrd 2916 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 𝐵 ∈ V)
16 uniexb 7488 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 ∈ V ↔ 𝐵 ∈ V)
1715, 16sylibr 236 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐵 ∈ V)
18 elfi2 8880 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ V → (𝑧 ∈ (fi‘𝐵) ↔ ∃𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝑧 = 𝑦))
1917, 18syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑧 ∈ (fi‘𝐵) ↔ ∃𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝑧 = 𝑦))
2019adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) → (𝑧 ∈ (fi‘𝐵) ↔ ∃𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝑧 = 𝑦))
2111ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝐹 ∈ (Fil‘𝑋))
22 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) → ¬ 𝑥 (𝐵𝐹))
23 intss1 4893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧𝑦 𝑦𝑧)
2423adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦) → 𝑦𝑧)
25 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦) → 𝑥 𝑦)
2624, 25sseldd 3970 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦) → 𝑥𝑧)
2726ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) ∧ ¬ 𝑧𝐹) → 𝑥𝑧)
28 eldifsn 4721 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ↔ (𝑦 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑦 ≠ ∅))
2928simplbi 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) → 𝑦 ∈ (𝒫 𝐵 ∩ Fin))
3029ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦 ∈ (𝒫 𝐵 ∩ Fin))
31 elfpw 8828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝑦𝐵𝑦 ∈ Fin))
3231simplbi 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 ∈ (𝒫 𝐵 ∩ Fin) → 𝑦𝐵)
3330, 32syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦𝐵)
3433sselda 3969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) ∧ 𝑧𝑦) → 𝑧𝐵)
3534anasss 469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) → 𝑧𝐵)
3635anim1i 616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) ∧ ¬ 𝑧𝐹) → (𝑧𝐵 ∧ ¬ 𝑧𝐹))
37 eldif 3948 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ (𝐵𝐹) ↔ (𝑧𝐵 ∧ ¬ 𝑧𝐹))
3836, 37sylibr 236 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) ∧ ¬ 𝑧𝐹) → 𝑧 ∈ (𝐵𝐹))
39 elunii 4845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥𝑧𝑧 ∈ (𝐵𝐹)) → 𝑥 (𝐵𝐹))
4027, 38, 39syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) ∧ ¬ 𝑧𝐹) → 𝑥 (𝐵𝐹))
4140ex 415 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) → (¬ 𝑧𝐹𝑥 (𝐵𝐹)))
4222, 41mt3d 150 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) → 𝑧𝐹)
4342expr 459 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → (𝑧𝑦𝑧𝐹))
4443ssrdv 3975 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦𝐹)
45 eldifsni 4724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) → 𝑦 ≠ ∅)
4645ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦 ≠ ∅)
47 elinel2 4175 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (𝒫 𝐵 ∩ Fin) → 𝑦 ∈ Fin)
4830, 47syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦 ∈ Fin)
49 elfir 8881 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦𝐹𝑦 ≠ ∅ ∧ 𝑦 ∈ Fin)) → 𝑦 ∈ (fi‘𝐹))
5021, 44, 46, 48, 49syl13anc 1368 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦 ∈ (fi‘𝐹))
51 filfi 22469 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹)
5221, 51syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → (fi‘𝐹) = 𝐹)
5350, 52eleqtrd 2917 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦𝐹)
5453expr 459 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ 𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})) → (𝑥 𝑦 𝑦𝐹))
55 eleq2 2903 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑦 → (𝑥𝑧𝑥 𝑦))
56 eleq1 2902 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑦 → (𝑧𝐹 𝑦𝐹))
5755, 56imbi12d 347 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → ((𝑥𝑧𝑧𝐹) ↔ (𝑥 𝑦 𝑦𝐹)))
5854, 57syl5ibrcom 249 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ 𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})) → (𝑧 = 𝑦 → (𝑥𝑧𝑧𝐹)))
5958rexlimdva 3286 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) → (∃𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝑧 = 𝑦 → (𝑥𝑧𝑧𝐹)))
6020, 59sylbid 242 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) → (𝑧 ∈ (fi‘𝐵) → (𝑥𝑧𝑧𝐹)))
6160imp32 421 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑧 ∈ (fi‘𝐵) ∧ 𝑥𝑧)) → 𝑧𝐹)
6261adantrrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝑧𝐹)
6362adantlr 713 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝑧𝐹)
64 elssuni 4870 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐽𝑦 𝐽)
6564ad2antrl 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦 𝐽)
66 fibas 21587 . . . . . . . . . . . . . . . . . . . . . . 23 (fi‘𝐵) ∈ TopBases
67 tgtopon 21581 . . . . . . . . . . . . . . . . . . . . . . 23 ((fi‘𝐵) ∈ TopBases → (topGen‘(fi‘𝐵)) ∈ (TopOn‘ (fi‘𝐵)))
6866, 67ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘(fi‘𝐵)) ∈ (TopOn‘ (fi‘𝐵))
692, 68eqeltrdi 2923 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐽 ∈ (TopOn‘ (fi‘𝐵)))
70 fiuni 8894 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵 ∈ V → 𝐵 = (fi‘𝐵))
7117, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 𝐵 = (fi‘𝐵))
7213, 71eqtrd 2858 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑋 = (fi‘𝐵))
7372fveq2d 6676 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (TopOn‘𝑋) = (TopOn‘ (fi‘𝐵)))
7469, 73eleqtrrd 2918 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽 ∈ (TopOn‘𝑋))
75 toponuni 21524 . . . . . . . . . . . . . . . . . . . 20 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
7674, 75syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 = 𝐽)
7776ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → 𝑋 = 𝐽)
7865, 77sseqtrrd 4010 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝑋)
7978adantr 483 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝑦𝑋)
80 simprrr 780 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝑧𝑦)
81 filss 22463 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑧𝐹𝑦𝑋𝑧𝑦)) → 𝑦𝐹)
8212, 63, 79, 80, 81syl13anc 1368 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝑦𝐹)
838, 82rexlimddv 3293 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝐹)
8483expr 459 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ 𝑦𝐽) → (𝑥𝑦𝑦𝐹))
8584ralrimiva 3184 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) → ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))
8685expr 459 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → (¬ 𝑥 (𝐵𝐹) → ∀𝑦𝐽 (𝑥𝑦𝑦𝐹)))
8786imdistanda 574 . . . . . . . . . 10 (𝜑 → ((𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹)) → (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
881, 87syl5bi 244 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋 (𝐵𝐹)) → (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
89 flimopn 22585 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
9074, 11, 89syl2anc 586 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
9188, 90sylibrd 261 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋 (𝐵𝐹)) → 𝑥 ∈ (𝐽 fLim 𝐹)))
9291ssrdv 3975 . . . . . . 7 (𝜑 → (𝑋 (𝐵𝐹)) ⊆ (𝐽 fLim 𝐹))
93 alexsub.6 . . . . . . 7 (𝜑 → (𝐽 fLim 𝐹) = ∅)
94 sseq0 4355 . . . . . . 7 (((𝑋 (𝐵𝐹)) ⊆ (𝐽 fLim 𝐹) ∧ (𝐽 fLim 𝐹) = ∅) → (𝑋 (𝐵𝐹)) = ∅)
9592, 93, 94syl2anc 586 . . . . . 6 (𝜑 → (𝑋 (𝐵𝐹)) = ∅)
96 ssdif0 4325 . . . . . 6 (𝑋 (𝐵𝐹) ↔ (𝑋 (𝐵𝐹)) = ∅)
9795, 96sylibr 236 . . . . 5 (𝜑𝑋 (𝐵𝐹))
98 difss 4110 . . . . . . 7 (𝐵𝐹) ⊆ 𝐵
9998unissi 4849 . . . . . 6 (𝐵𝐹) ⊆ 𝐵
10099, 13sseqtrrid 4022 . . . . 5 (𝜑 (𝐵𝐹) ⊆ 𝑋)
10197, 100eqssd 3986 . . . 4 (𝜑𝑋 = (𝐵𝐹))
102101, 98jctil 522 . . 3 (𝜑 → ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹)))
103 difexg 5233 . . . . . 6 (𝐵 ∈ V → (𝐵𝐹) ∈ V)
10417, 103syl 17 . . . . 5 (𝜑 → (𝐵𝐹) ∈ V)
105104adantr 483 . . . 4 ((𝜑 ∧ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹))) → (𝐵𝐹) ∈ V)
106 sseq1 3994 . . . . . . . 8 (𝑥 = (𝐵𝐹) → (𝑥𝐵 ↔ (𝐵𝐹) ⊆ 𝐵))
107 unieq 4851 . . . . . . . . 9 (𝑥 = (𝐵𝐹) → 𝑥 = (𝐵𝐹))
108107eqeq2d 2834 . . . . . . . 8 (𝑥 = (𝐵𝐹) → (𝑋 = 𝑥𝑋 = (𝐵𝐹)))
109106, 108anbi12d 632 . . . . . . 7 (𝑥 = (𝐵𝐹) → ((𝑥𝐵𝑋 = 𝑥) ↔ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹))))
110109anbi2d 630 . . . . . 6 (𝑥 = (𝐵𝐹) → ((𝜑 ∧ (𝑥𝐵𝑋 = 𝑥)) ↔ (𝜑 ∧ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹)))))
111 pweq 4557 . . . . . . . 8 (𝑥 = (𝐵𝐹) → 𝒫 𝑥 = 𝒫 (𝐵𝐹))
112111ineq1d 4190 . . . . . . 7 (𝑥 = (𝐵𝐹) → (𝒫 𝑥 ∩ Fin) = (𝒫 (𝐵𝐹) ∩ Fin))
113112rexeqdv 3418 . . . . . 6 (𝑥 = (𝐵𝐹) → (∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦 ↔ ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦))
114110, 113imbi12d 347 . . . . 5 (𝑥 = (𝐵𝐹) → (((𝜑 ∧ (𝑥𝐵𝑋 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦) ↔ ((𝜑 ∧ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹))) → ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦)))
115 alexsub.4 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑋 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)
116114, 115vtoclg 3569 . . . 4 ((𝐵𝐹) ∈ V → ((𝜑 ∧ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹))) → ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦))
117105, 116mpcom 38 . . 3 ((𝜑 ∧ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹))) → ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦)
118102, 117mpdan 685 . 2 (𝜑 → ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦)
119 unieq 4851 . . . . . . 7 (𝑦 = ∅ → 𝑦 = ∅)
120 uni0 4868 . . . . . . 7 ∅ = ∅
121119, 120syl6eq 2874 . . . . . 6 (𝑦 = ∅ → 𝑦 = ∅)
122121neeq2d 3078 . . . . 5 (𝑦 = ∅ → (𝑋 𝑦𝑋 ≠ ∅))
123 difssd 4111 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → (𝑋𝑧) ⊆ 𝑋)
124123ralrimivw 3185 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → ∀𝑧𝑦 (𝑋𝑧) ⊆ 𝑋)
125 riinn0 5007 . . . . . . . . . 10 ((∀𝑧𝑦 (𝑋𝑧) ⊆ 𝑋𝑦 ≠ ∅) → (𝑋 𝑧𝑦 (𝑋𝑧)) = 𝑧𝑦 (𝑋𝑧))
126124, 125sylan 582 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑋 𝑧𝑦 (𝑋𝑧)) = 𝑧𝑦 (𝑋𝑧))
12714ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑋 ∈ V)
128 difexg 5233 . . . . . . . . . . . . 13 (𝑋 ∈ V → (𝑋𝑧) ∈ V)
129127, 128syl 17 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑋𝑧) ∈ V)
130129ralrimivw 3185 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → ∀𝑧𝑦 (𝑋𝑧) ∈ V)
131 dfiin2g 4959 . . . . . . . . . . 11 (∀𝑧𝑦 (𝑋𝑧) ∈ V → 𝑧𝑦 (𝑋𝑧) = {𝑥 ∣ ∃𝑧𝑦 𝑥 = (𝑋𝑧)})
132130, 131syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑧𝑦 (𝑋𝑧) = {𝑥 ∣ ∃𝑧𝑦 𝑥 = (𝑋𝑧)})
133 eqid 2823 . . . . . . . . . . . 12 (𝑧𝑦 ↦ (𝑋𝑧)) = (𝑧𝑦 ↦ (𝑋𝑧))
134133rnmpt 5829 . . . . . . . . . . 11 ran (𝑧𝑦 ↦ (𝑋𝑧)) = {𝑥 ∣ ∃𝑧𝑦 𝑥 = (𝑋𝑧)}
135134inteqi 4882 . . . . . . . . . 10 ran (𝑧𝑦 ↦ (𝑋𝑧)) = {𝑥 ∣ ∃𝑧𝑦 𝑥 = (𝑋𝑧)}
136132, 135syl6eqr 2876 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑧𝑦 (𝑋𝑧) = ran (𝑧𝑦 ↦ (𝑋𝑧)))
137126, 136eqtrd 2858 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑋 𝑧𝑦 (𝑋𝑧)) = ran (𝑧𝑦 ↦ (𝑋𝑧)))
13811ad2antrr 724 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝐹 ∈ (Fil‘𝑋))
139 elfpw 8828 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin) ↔ (𝑦 ⊆ (𝐵𝐹) ∧ 𝑦 ∈ Fin))
140139simplbi 500 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin) → 𝑦 ⊆ (𝐵𝐹))
141140ad2antlr 725 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑦 ⊆ (𝐵𝐹))
142141sselda 3969 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝑧 ∈ (𝐵𝐹))
143142eldifbd 3951 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → ¬ 𝑧𝐹)
1449ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝐹 ∈ (UFil‘𝑋))
145141difss2d 4113 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑦𝐵)
146145sselda 3969 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝑧𝐵)
147 elssuni 4870 . . . . . . . . . . . . . . 15 (𝑧𝐵𝑧 𝐵)
148146, 147syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝑧 𝐵)
14913ad3antrrr 728 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝑋 = 𝐵)
150148, 149sseqtrrd 4010 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝑧𝑋)
151 ufilb 22516 . . . . . . . . . . . . 13 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑧𝑋) → (¬ 𝑧𝐹 ↔ (𝑋𝑧) ∈ 𝐹))
152144, 150, 151syl2anc 586 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → (¬ 𝑧𝐹 ↔ (𝑋𝑧) ∈ 𝐹))
153143, 152mpbid 234 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → (𝑋𝑧) ∈ 𝐹)
154153fmpttd 6881 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑧𝑦 ↦ (𝑋𝑧)):𝑦𝐹)
155154frnd 6523 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → ran (𝑧𝑦 ↦ (𝑋𝑧)) ⊆ 𝐹)
156133, 153dmmptd 6495 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → dom (𝑧𝑦 ↦ (𝑋𝑧)) = 𝑦)
157 simpr 487 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑦 ≠ ∅)
158156, 157eqnetrd 3085 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → dom (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅)
159 dm0rn0 5797 . . . . . . . . . . 11 (dom (𝑧𝑦 ↦ (𝑋𝑧)) = ∅ ↔ ran (𝑧𝑦 ↦ (𝑋𝑧)) = ∅)
160159necon3bii 3070 . . . . . . . . . 10 (dom (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅ ↔ ran (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅)
161158, 160sylib 220 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → ran (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅)
162 elinel2 4175 . . . . . . . . . . 11 (𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin) → 𝑦 ∈ Fin)
163162ad2antlr 725 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑦 ∈ Fin)
164 abrexfi 8826 . . . . . . . . . . 11 (𝑦 ∈ Fin → {𝑥 ∣ ∃𝑧𝑦 𝑥 = (𝑋𝑧)} ∈ Fin)
165134, 164eqeltrid 2919 . . . . . . . . . 10 (𝑦 ∈ Fin → ran (𝑧𝑦 ↦ (𝑋𝑧)) ∈ Fin)
166163, 165syl 17 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → ran (𝑧𝑦 ↦ (𝑋𝑧)) ∈ Fin)
167 filintn0 22471 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (ran (𝑧𝑦 ↦ (𝑋𝑧)) ⊆ 𝐹 ∧ ran (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅ ∧ ran (𝑧𝑦 ↦ (𝑋𝑧)) ∈ Fin)) → ran (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅)
168138, 155, 161, 166, 167syl13anc 1368 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → ran (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅)
169137, 168eqnetrd 3085 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑋 𝑧𝑦 (𝑋𝑧)) ≠ ∅)
170 disj3 4405 . . . . . . . 8 ((𝑋 𝑧𝑦 (𝑋𝑧)) = ∅ ↔ 𝑋 = (𝑋 𝑧𝑦 (𝑋𝑧)))
171170necon3bii 3070 . . . . . . 7 ((𝑋 𝑧𝑦 (𝑋𝑧)) ≠ ∅ ↔ 𝑋 ≠ (𝑋 𝑧𝑦 (𝑋𝑧)))
172169, 171sylib 220 . . . . . 6 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑋 ≠ (𝑋 𝑧𝑦 (𝑋𝑧)))
173 iundif2 4998 . . . . . . 7 𝑧𝑦 (𝑋 ∖ (𝑋𝑧)) = (𝑋 𝑧𝑦 (𝑋𝑧))
174 dfss4 4237 . . . . . . . . . 10 (𝑧𝑋 ↔ (𝑋 ∖ (𝑋𝑧)) = 𝑧)
175150, 174sylib 220 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → (𝑋 ∖ (𝑋𝑧)) = 𝑧)
176175iuneq2dv 4945 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑧𝑦 (𝑋 ∖ (𝑋𝑧)) = 𝑧𝑦 𝑧)
177 uniiun 4984 . . . . . . . 8 𝑦 = 𝑧𝑦 𝑧
178176, 177syl6eqr 2876 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑧𝑦 (𝑋 ∖ (𝑋𝑧)) = 𝑦)
179173, 178syl5eqr 2872 . . . . . 6 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑋 𝑧𝑦 (𝑋𝑧)) = 𝑦)
180172, 179neeqtrd 3087 . . . . 5 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑋 𝑦)
18111adantr 483 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → 𝐹 ∈ (Fil‘𝑋))
182 filtop 22465 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
183 fileln0 22460 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑋𝐹) → 𝑋 ≠ ∅)
184181, 182, 183syl2anc2 587 . . . . 5 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → 𝑋 ≠ ∅)
185122, 180, 184pm2.61ne 3104 . . . 4 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → 𝑋 𝑦)
186185neneqd 3023 . . 3 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → ¬ 𝑋 = 𝑦)
187186nrexdv 3272 . 2 (𝜑 → ¬ ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦)
188118, 187pm2.65i 196 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {cab 2801  wne 3018  wral 3140  wrex 3141  Vcvv 3496  cdif 3935  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569   cuni 4840   cint 4878   ciun 4921   ciin 4922  cmpt 5148  dom cdm 5557  ran crn 5558  cfv 6357  (class class class)co 7158  Fincfn 8511  ficfi 8876  topGenctg 16713  TopOnctopon 21520  TopBasesctb 21555  Filcfil 22455  UFilcufil 22509  UFLcufl 22510   fLim cflim 22544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-fin 8515  df-fi 8877  df-topgen 16719  df-fbas 20544  df-top 21504  df-topon 21521  df-bases 21556  df-ntr 21630  df-nei 21708  df-fil 22456  df-ufil 22511  df-flim 22549
This theorem is referenced by:  alexsub  22655
  Copyright terms: Public domain W3C validator