MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  algcvg Structured version   Visualization version   GIF version

Theorem algcvg 15213
Description: One way to prove that an algorithm halts is to construct a countdown function 𝐶:𝑆⟶ℕ0 whose value is guaranteed to decrease for each iteration of 𝐹 until it reaches 0. That is, if 𝑋𝑆 is not a fixed point of 𝐹, then (𝐶‘(𝐹𝑋)) < (𝐶𝑋).

If 𝐶 is a countdown function for algorithm 𝐹, the sequence (𝐶‘(𝑅𝑘)) reaches 0 after at most 𝑁 steps, where 𝑁 is the value of 𝐶 for the initial state 𝐴. (Contributed by Paul Chapman, 22-Jun-2011.)

Hypotheses
Ref Expression
algcvg.1 𝐹:𝑆𝑆
algcvg.2 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
algcvg.3 𝐶:𝑆⟶ℕ0
algcvg.4 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
algcvg.5 𝑁 = (𝐶𝐴)
Assertion
Ref Expression
algcvg (𝐴𝑆 → (𝐶‘(𝑅𝑁)) = 0)
Distinct variable groups:   𝑧,𝐶   𝑧,𝐹   𝑧,𝑅   𝑧,𝑆
Allowed substitution hints:   𝐴(𝑧)   𝑁(𝑧)

Proof of Theorem algcvg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 11666 . . . 4 0 = (ℤ‘0)
2 algcvg.2 . . . 4 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
3 0zd 11333 . . . 4 (𝐴𝑆 → 0 ∈ ℤ)
4 id 22 . . . 4 (𝐴𝑆𝐴𝑆)
5 algcvg.1 . . . . 5 𝐹:𝑆𝑆
65a1i 11 . . . 4 (𝐴𝑆𝐹:𝑆𝑆)
71, 2, 3, 4, 6algrf 15210 . . 3 (𝐴𝑆𝑅:ℕ0𝑆)
8 algcvg.5 . . . 4 𝑁 = (𝐶𝐴)
9 algcvg.3 . . . . 5 𝐶:𝑆⟶ℕ0
109ffvelrni 6314 . . . 4 (𝐴𝑆 → (𝐶𝐴) ∈ ℕ0)
118, 10syl5eqel 2702 . . 3 (𝐴𝑆𝑁 ∈ ℕ0)
12 fvco3 6232 . . 3 ((𝑅:ℕ0𝑆𝑁 ∈ ℕ0) → ((𝐶𝑅)‘𝑁) = (𝐶‘(𝑅𝑁)))
137, 11, 12syl2anc 692 . 2 (𝐴𝑆 → ((𝐶𝑅)‘𝑁) = (𝐶‘(𝑅𝑁)))
14 fco 6015 . . . 4 ((𝐶:𝑆⟶ℕ0𝑅:ℕ0𝑆) → (𝐶𝑅):ℕ0⟶ℕ0)
159, 7, 14sylancr 694 . . 3 (𝐴𝑆 → (𝐶𝑅):ℕ0⟶ℕ0)
16 0nn0 11251 . . . . . 6 0 ∈ ℕ0
17 fvco3 6232 . . . . . 6 ((𝑅:ℕ0𝑆 ∧ 0 ∈ ℕ0) → ((𝐶𝑅)‘0) = (𝐶‘(𝑅‘0)))
187, 16, 17sylancl 693 . . . . 5 (𝐴𝑆 → ((𝐶𝑅)‘0) = (𝐶‘(𝑅‘0)))
191, 2, 3, 4algr0 15209 . . . . . 6 (𝐴𝑆 → (𝑅‘0) = 𝐴)
2019fveq2d 6152 . . . . 5 (𝐴𝑆 → (𝐶‘(𝑅‘0)) = (𝐶𝐴))
2118, 20eqtrd 2655 . . . 4 (𝐴𝑆 → ((𝐶𝑅)‘0) = (𝐶𝐴))
2221, 8syl6reqr 2674 . . 3 (𝐴𝑆𝑁 = ((𝐶𝑅)‘0))
237ffvelrnda 6315 . . . . 5 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ 𝑆)
24 fveq2 6148 . . . . . . . . 9 (𝑧 = (𝑅𝑘) → (𝐹𝑧) = (𝐹‘(𝑅𝑘)))
2524fveq2d 6152 . . . . . . . 8 (𝑧 = (𝑅𝑘) → (𝐶‘(𝐹𝑧)) = (𝐶‘(𝐹‘(𝑅𝑘))))
2625neeq1d 2849 . . . . . . 7 (𝑧 = (𝑅𝑘) → ((𝐶‘(𝐹𝑧)) ≠ 0 ↔ (𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0))
27 fveq2 6148 . . . . . . . 8 (𝑧 = (𝑅𝑘) → (𝐶𝑧) = (𝐶‘(𝑅𝑘)))
2825, 27breq12d 4626 . . . . . . 7 (𝑧 = (𝑅𝑘) → ((𝐶‘(𝐹𝑧)) < (𝐶𝑧) ↔ (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
2926, 28imbi12d 334 . . . . . 6 (𝑧 = (𝑅𝑘) → (((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)) ↔ ((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘)))))
30 algcvg.4 . . . . . 6 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
3129, 30vtoclga 3258 . . . . 5 ((𝑅𝑘) ∈ 𝑆 → ((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
3223, 31syl 17 . . . 4 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
33 peano2nn0 11277 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
34 fvco3 6232 . . . . . . 7 ((𝑅:ℕ0𝑆 ∧ (𝑘 + 1) ∈ ℕ0) → ((𝐶𝑅)‘(𝑘 + 1)) = (𝐶‘(𝑅‘(𝑘 + 1))))
357, 33, 34syl2an 494 . . . . . 6 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶𝑅)‘(𝑘 + 1)) = (𝐶‘(𝑅‘(𝑘 + 1))))
361, 2, 3, 4, 6algrp1 15211 . . . . . . 7 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
3736fveq2d 6152 . . . . . 6 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝐶‘(𝑅‘(𝑘 + 1))) = (𝐶‘(𝐹‘(𝑅𝑘))))
3835, 37eqtrd 2655 . . . . 5 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶𝑅)‘(𝑘 + 1)) = (𝐶‘(𝐹‘(𝑅𝑘))))
3938neeq1d 2849 . . . 4 ((𝐴𝑆𝑘 ∈ ℕ0) → (((𝐶𝑅)‘(𝑘 + 1)) ≠ 0 ↔ (𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0))
40 fvco3 6232 . . . . . 6 ((𝑅:ℕ0𝑆𝑘 ∈ ℕ0) → ((𝐶𝑅)‘𝑘) = (𝐶‘(𝑅𝑘)))
417, 40sylan 488 . . . . 5 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶𝑅)‘𝑘) = (𝐶‘(𝑅𝑘)))
4238, 41breq12d 4626 . . . 4 ((𝐴𝑆𝑘 ∈ ℕ0) → (((𝐶𝑅)‘(𝑘 + 1)) < ((𝐶𝑅)‘𝑘) ↔ (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
4332, 39, 423imtr4d 283 . . 3 ((𝐴𝑆𝑘 ∈ ℕ0) → (((𝐶𝑅)‘(𝑘 + 1)) ≠ 0 → ((𝐶𝑅)‘(𝑘 + 1)) < ((𝐶𝑅)‘𝑘)))
4415, 22, 43nn0seqcvgd 15207 . 2 (𝐴𝑆 → ((𝐶𝑅)‘𝑁) = 0)
4513, 44eqtr3d 2657 1 (𝐴𝑆 → (𝐶‘(𝑅𝑁)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  {csn 4148   class class class wbr 4613   × cxp 5072  ccom 5078  wf 5843  cfv 5847  (class class class)co 6604  1st c1st 7111  0cc0 9880  1c1 9881   + caddc 9883   < clt 10018  0cn0 11236  seqcseq 12741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-seq 12742
This theorem is referenced by:  algcvga  15216
  Copyright terms: Public domain W3C validator