MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  algcvgblem Structured version   Visualization version   GIF version

Theorem algcvgblem 15920
Description: Lemma for algcvgb 15921. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
algcvgblem ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑀 = 0 → 𝑁 = 0))))

Proof of Theorem algcvgblem
StepHypRef Expression
1 imor 849 . . . . 5 ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀))
2 0re 10642 . . . . . . . . . . . 12 0 ∈ ℝ
3 nn0re 11905 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
43adantr 483 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
5 ltnle 10719 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 < 𝑀 ↔ ¬ 𝑀 ≤ 0))
62, 4, 5sylancr 589 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑀 ↔ ¬ 𝑀 ≤ 0))
7 nn0le0eq0 11924 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0 → (𝑀 ≤ 0 ↔ 𝑀 = 0))
87notbid 320 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0 → (¬ 𝑀 ≤ 0 ↔ ¬ 𝑀 = 0))
98adantr 483 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑀 ≤ 0 ↔ ¬ 𝑀 = 0))
106, 9bitrd 281 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑀 ↔ ¬ 𝑀 = 0))
11 df-ne 3017 . . . . . . . . . 10 (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0)
1210, 11syl6bbr 291 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑀𝑀 ≠ 0))
1312anbi2d 630 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 ∧ 0 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∧ 𝑀 ≠ 0)))
14 nne 3020 . . . . . . . . . 10 𝑁 ≠ 0 ↔ 𝑁 = 0)
15 breq1 5068 . . . . . . . . . 10 (𝑁 = 0 → (𝑁 < 𝑀 ↔ 0 < 𝑀))
1614, 15sylbi 219 . . . . . . . . 9 𝑁 ≠ 0 → (𝑁 < 𝑀 ↔ 0 < 𝑀))
1716biimpar 480 . . . . . . . 8 ((¬ 𝑁 ≠ 0 ∧ 0 < 𝑀) → 𝑁 < 𝑀)
1813, 17syl6bir 256 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 ∧ 𝑀 ≠ 0) → 𝑁 < 𝑀))
1918expd 418 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 ≠ 0 → (𝑀 ≠ 0 → 𝑁 < 𝑀)))
20 ax-1 6 . . . . . 6 (𝑁 < 𝑀 → (𝑀 ≠ 0 → 𝑁 < 𝑀))
21 jaob 958 . . . . . 6 (((¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀) → (𝑀 ≠ 0 → 𝑁 < 𝑀)) ↔ ((¬ 𝑁 ≠ 0 → (𝑀 ≠ 0 → 𝑁 < 𝑀)) ∧ (𝑁 < 𝑀 → (𝑀 ≠ 0 → 𝑁 < 𝑀))))
2219, 20, 21sylanblrc 592 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀) → (𝑀 ≠ 0 → 𝑁 < 𝑀)))
231, 22syl5bi 244 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) → (𝑀 ≠ 0 → 𝑁 < 𝑀)))
24 nn0ge0 11921 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
2524adantl 484 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ 𝑁)
26 nn0re 11905 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
27 lelttr 10730 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤ 𝑁𝑁 < 𝑀) → 0 < 𝑀))
282, 27mp3an1 1444 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤ 𝑁𝑁 < 𝑀) → 0 < 𝑀))
2926, 3, 28syl2anr 598 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((0 ≤ 𝑁𝑁 < 𝑀) → 0 < 𝑀))
3025, 29mpand 693 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 < 𝑀 → 0 < 𝑀))
3130, 12sylibd 241 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 < 𝑀𝑀 ≠ 0))
3231imim2d 57 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) → (𝑁 ≠ 0 → 𝑀 ≠ 0)))
3323, 32jcad 515 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) → ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0))))
34 pm3.34 764 . . 3 (((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0)) → (𝑁 ≠ 0 → 𝑁 < 𝑀))
3533, 34impbid1 227 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0))))
36 con34b 318 . . . 4 ((𝑀 = 0 → 𝑁 = 0) ↔ (¬ 𝑁 = 0 → ¬ 𝑀 = 0))
37 df-ne 3017 . . . . 5 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
3837, 11imbi12i 353 . . . 4 ((𝑁 ≠ 0 → 𝑀 ≠ 0) ↔ (¬ 𝑁 = 0 → ¬ 𝑀 = 0))
3936, 38bitr4i 280 . . 3 ((𝑀 = 0 → 𝑁 = 0) ↔ (𝑁 ≠ 0 → 𝑀 ≠ 0))
4039anbi2i 624 . 2 (((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑀 = 0 → 𝑁 = 0)) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0)))
4135, 40syl6bbr 291 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑀 = 0 → 𝑁 = 0))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016   class class class wbr 5065  cr 10535  0cc0 10536   < clt 10674  cle 10675  0cn0 11896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11897
This theorem is referenced by:  algcvgb  15921
  Copyright terms: Public domain W3C validator