MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  algfx Structured version   Visualization version   GIF version

Theorem algfx 15217
Description: If 𝐹 reaches a fixed point when the countdown function 𝐶 reaches 0, 𝐹 remains fixed after 𝑁 steps. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
algcvga.1 𝐹:𝑆𝑆
algcvga.2 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
algcvga.3 𝐶:𝑆⟶ℕ0
algcvga.4 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
algcvga.5 𝑁 = (𝐶𝐴)
algfx.6 (𝑧𝑆 → ((𝐶𝑧) = 0 → (𝐹𝑧) = 𝑧))
Assertion
Ref Expression
algfx (𝐴𝑆 → (𝐾 ∈ (ℤ𝑁) → (𝑅𝐾) = (𝑅𝑁)))
Distinct variable groups:   𝑧,𝐶   𝑧,𝐹   𝑧,𝑅   𝑧,𝑆   𝑧,𝐾   𝑧,𝑁
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem algfx
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algcvga.5 . . . 4 𝑁 = (𝐶𝐴)
2 algcvga.3 . . . . 5 𝐶:𝑆⟶ℕ0
32ffvelrni 6314 . . . 4 (𝐴𝑆 → (𝐶𝐴) ∈ ℕ0)
41, 3syl5eqel 2702 . . 3 (𝐴𝑆𝑁 ∈ ℕ0)
54nn0zd 11424 . 2 (𝐴𝑆𝑁 ∈ ℤ)
6 uzval 11633 . . . . . . 7 (𝑁 ∈ ℤ → (ℤ𝑁) = {𝑧 ∈ ℤ ∣ 𝑁𝑧})
76eleq2d 2684 . . . . . 6 (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) ↔ 𝐾 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
87pm5.32i 668 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (ℤ𝑁)) ↔ (𝑁 ∈ ℤ ∧ 𝐾 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
9 fveq2 6148 . . . . . . . 8 (𝑚 = 𝑁 → (𝑅𝑚) = (𝑅𝑁))
109eqeq1d 2623 . . . . . . 7 (𝑚 = 𝑁 → ((𝑅𝑚) = (𝑅𝑁) ↔ (𝑅𝑁) = (𝑅𝑁)))
1110imbi2d 330 . . . . . 6 (𝑚 = 𝑁 → ((𝐴𝑆 → (𝑅𝑚) = (𝑅𝑁)) ↔ (𝐴𝑆 → (𝑅𝑁) = (𝑅𝑁))))
12 fveq2 6148 . . . . . . . 8 (𝑚 = 𝑘 → (𝑅𝑚) = (𝑅𝑘))
1312eqeq1d 2623 . . . . . . 7 (𝑚 = 𝑘 → ((𝑅𝑚) = (𝑅𝑁) ↔ (𝑅𝑘) = (𝑅𝑁)))
1413imbi2d 330 . . . . . 6 (𝑚 = 𝑘 → ((𝐴𝑆 → (𝑅𝑚) = (𝑅𝑁)) ↔ (𝐴𝑆 → (𝑅𝑘) = (𝑅𝑁))))
15 fveq2 6148 . . . . . . . 8 (𝑚 = (𝑘 + 1) → (𝑅𝑚) = (𝑅‘(𝑘 + 1)))
1615eqeq1d 2623 . . . . . . 7 (𝑚 = (𝑘 + 1) → ((𝑅𝑚) = (𝑅𝑁) ↔ (𝑅‘(𝑘 + 1)) = (𝑅𝑁)))
1716imbi2d 330 . . . . . 6 (𝑚 = (𝑘 + 1) → ((𝐴𝑆 → (𝑅𝑚) = (𝑅𝑁)) ↔ (𝐴𝑆 → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
18 fveq2 6148 . . . . . . . 8 (𝑚 = 𝐾 → (𝑅𝑚) = (𝑅𝐾))
1918eqeq1d 2623 . . . . . . 7 (𝑚 = 𝐾 → ((𝑅𝑚) = (𝑅𝑁) ↔ (𝑅𝐾) = (𝑅𝑁)))
2019imbi2d 330 . . . . . 6 (𝑚 = 𝐾 → ((𝐴𝑆 → (𝑅𝑚) = (𝑅𝑁)) ↔ (𝐴𝑆 → (𝑅𝐾) = (𝑅𝑁))))
21 eqidd 2622 . . . . . . 7 (𝐴𝑆 → (𝑅𝑁) = (𝑅𝑁))
2221a1i 11 . . . . . 6 (𝑁 ∈ ℤ → (𝐴𝑆 → (𝑅𝑁) = (𝑅𝑁)))
236eleq2d 2684 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑘 ∈ (ℤ𝑁) ↔ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
2423pm5.32i 668 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ (ℤ𝑁)) ↔ (𝑁 ∈ ℤ ∧ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
25 eluznn0 11701 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
264, 25sylan 488 . . . . . . . . . . . . . 14 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
27 nn0uz 11666 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
28 algcvga.2 . . . . . . . . . . . . . . 15 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
29 0zd 11333 . . . . . . . . . . . . . . 15 (𝐴𝑆 → 0 ∈ ℤ)
30 id 22 . . . . . . . . . . . . . . 15 (𝐴𝑆𝐴𝑆)
31 algcvga.1 . . . . . . . . . . . . . . . 16 𝐹:𝑆𝑆
3231a1i 11 . . . . . . . . . . . . . . 15 (𝐴𝑆𝐹:𝑆𝑆)
3327, 28, 29, 30, 32algrp1 15211 . . . . . . . . . . . . . 14 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
3426, 33syldan 487 . . . . . . . . . . . . 13 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
3527, 28, 29, 30, 32algrf 15210 . . . . . . . . . . . . . . . 16 (𝐴𝑆𝑅:ℕ0𝑆)
3635ffvelrnda 6315 . . . . . . . . . . . . . . 15 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ 𝑆)
3726, 36syldan 487 . . . . . . . . . . . . . 14 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝑅𝑘) ∈ 𝑆)
38 algcvga.4 . . . . . . . . . . . . . . . 16 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
3931, 28, 2, 38, 1algcvga 15216 . . . . . . . . . . . . . . 15 (𝐴𝑆 → (𝑘 ∈ (ℤ𝑁) → (𝐶‘(𝑅𝑘)) = 0))
4039imp 445 . . . . . . . . . . . . . 14 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝐶‘(𝑅𝑘)) = 0)
41 fveq2 6148 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑅𝑘) → (𝐶𝑧) = (𝐶‘(𝑅𝑘)))
4241eqeq1d 2623 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑅𝑘) → ((𝐶𝑧) = 0 ↔ (𝐶‘(𝑅𝑘)) = 0))
43 fveq2 6148 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑅𝑘) → (𝐹𝑧) = (𝐹‘(𝑅𝑘)))
44 id 22 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑅𝑘) → 𝑧 = (𝑅𝑘))
4543, 44eqeq12d 2636 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑅𝑘) → ((𝐹𝑧) = 𝑧 ↔ (𝐹‘(𝑅𝑘)) = (𝑅𝑘)))
4642, 45imbi12d 334 . . . . . . . . . . . . . . 15 (𝑧 = (𝑅𝑘) → (((𝐶𝑧) = 0 → (𝐹𝑧) = 𝑧) ↔ ((𝐶‘(𝑅𝑘)) = 0 → (𝐹‘(𝑅𝑘)) = (𝑅𝑘))))
47 algfx.6 . . . . . . . . . . . . . . 15 (𝑧𝑆 → ((𝐶𝑧) = 0 → (𝐹𝑧) = 𝑧))
4846, 47vtoclga 3258 . . . . . . . . . . . . . 14 ((𝑅𝑘) ∈ 𝑆 → ((𝐶‘(𝑅𝑘)) = 0 → (𝐹‘(𝑅𝑘)) = (𝑅𝑘)))
4937, 40, 48sylc 65 . . . . . . . . . . . . 13 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝐹‘(𝑅𝑘)) = (𝑅𝑘))
5034, 49eqtrd 2655 . . . . . . . . . . . 12 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝑅‘(𝑘 + 1)) = (𝑅𝑘))
5150eqeq1d 2623 . . . . . . . . . . 11 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → ((𝑅‘(𝑘 + 1)) = (𝑅𝑁) ↔ (𝑅𝑘) = (𝑅𝑁)))
5251biimprd 238 . . . . . . . . . 10 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → ((𝑅𝑘) = (𝑅𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅𝑁)))
5352expcom 451 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑁) → (𝐴𝑆 → ((𝑅𝑘) = (𝑅𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
5453adantl 482 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ (ℤ𝑁)) → (𝐴𝑆 → ((𝑅𝑘) = (𝑅𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
5524, 54sylbir 225 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}) → (𝐴𝑆 → ((𝑅𝑘) = (𝑅𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
5655a2d 29 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}) → ((𝐴𝑆 → (𝑅𝑘) = (𝑅𝑁)) → (𝐴𝑆 → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
5711, 14, 17, 20, 22, 56uzind3 11415 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}) → (𝐴𝑆 → (𝑅𝐾) = (𝑅𝑁)))
588, 57sylbi 207 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (ℤ𝑁)) → (𝐴𝑆 → (𝑅𝐾) = (𝑅𝑁)))
5958ex 450 . . 3 (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) → (𝐴𝑆 → (𝑅𝐾) = (𝑅𝑁))))
6059com3r 87 . 2 (𝐴𝑆 → (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) → (𝑅𝐾) = (𝑅𝑁))))
615, 60mpd 15 1 (𝐴𝑆 → (𝐾 ∈ (ℤ𝑁) → (𝑅𝐾) = (𝑅𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  {crab 2911  {csn 4148   class class class wbr 4613   × cxp 5072  ccom 5078  wf 5843  cfv 5847  (class class class)co 6604  1st c1st 7111  0cc0 9880  1c1 9881   + caddc 9883   < clt 10018  cle 10019  0cn0 11236  cz 11321  cuz 11631  seqcseq 12741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-seq 12742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator