MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alginv Structured version   Visualization version   GIF version

Theorem alginv 15482
Description: If 𝐼 is an invariant of 𝐹, its value is unchanged after any number of iterations of 𝐹. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
alginv.1 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
alginv.2 𝐹:𝑆𝑆
alginv.3 𝐼 Fn 𝑆
alginv.4 (𝑥𝑆 → (𝐼‘(𝐹𝑥)) = (𝐼𝑥))
Assertion
Ref Expression
alginv ((𝐴𝑆𝐾 ∈ ℕ0) → (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐼   𝑥,𝑅   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐾(𝑥)

Proof of Theorem alginv
Dummy variables 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6344 . . . . . 6 (𝑧 = 0 → (𝑅𝑧) = (𝑅‘0))
21fveq2d 6348 . . . . 5 (𝑧 = 0 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)))
32eqeq1d 2754 . . . 4 (𝑧 = 0 → ((𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0))))
43imbi2d 329 . . 3 (𝑧 = 0 → ((𝐴𝑆 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴𝑆 → (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0)))))
5 fveq2 6344 . . . . . 6 (𝑧 = 𝑘 → (𝑅𝑧) = (𝑅𝑘))
65fveq2d 6348 . . . . 5 (𝑧 = 𝑘 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅𝑘)))
76eqeq1d 2754 . . . 4 (𝑧 = 𝑘 → ((𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0))))
87imbi2d 329 . . 3 (𝑧 = 𝑘 → ((𝐴𝑆 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴𝑆 → (𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0)))))
9 fveq2 6344 . . . . . 6 (𝑧 = (𝑘 + 1) → (𝑅𝑧) = (𝑅‘(𝑘 + 1)))
109fveq2d 6348 . . . . 5 (𝑧 = (𝑘 + 1) → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘(𝑘 + 1))))
1110eqeq1d 2754 . . . 4 (𝑧 = (𝑘 + 1) → ((𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0))))
1211imbi2d 329 . . 3 (𝑧 = (𝑘 + 1) → ((𝐴𝑆 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴𝑆 → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)))))
13 fveq2 6344 . . . . . 6 (𝑧 = 𝐾 → (𝑅𝑧) = (𝑅𝐾))
1413fveq2d 6348 . . . . 5 (𝑧 = 𝐾 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅𝐾)))
1514eqeq1d 2754 . . . 4 (𝑧 = 𝐾 → ((𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0))))
1615imbi2d 329 . . 3 (𝑧 = 𝐾 → ((𝐴𝑆 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴𝑆 → (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0)))))
17 eqidd 2753 . . 3 (𝐴𝑆 → (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0)))
18 nn0uz 11907 . . . . . . . . . 10 0 = (ℤ‘0)
19 alginv.1 . . . . . . . . . 10 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
20 0zd 11573 . . . . . . . . . 10 (𝐴𝑆 → 0 ∈ ℤ)
21 id 22 . . . . . . . . . 10 (𝐴𝑆𝐴𝑆)
22 alginv.2 . . . . . . . . . . 11 𝐹:𝑆𝑆
2322a1i 11 . . . . . . . . . 10 (𝐴𝑆𝐹:𝑆𝑆)
2418, 19, 20, 21, 23algrp1 15481 . . . . . . . . 9 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
2524fveq2d 6348 . . . . . . . 8 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝐹‘(𝑅𝑘))))
2618, 19, 20, 21, 23algrf 15480 . . . . . . . . . 10 (𝐴𝑆𝑅:ℕ0𝑆)
2726ffvelrnda 6514 . . . . . . . . 9 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ 𝑆)
28 fveq2 6344 . . . . . . . . . . . 12 (𝑥 = (𝑅𝑘) → (𝐹𝑥) = (𝐹‘(𝑅𝑘)))
2928fveq2d 6348 . . . . . . . . . . 11 (𝑥 = (𝑅𝑘) → (𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹‘(𝑅𝑘))))
30 fveq2 6344 . . . . . . . . . . 11 (𝑥 = (𝑅𝑘) → (𝐼𝑥) = (𝐼‘(𝑅𝑘)))
3129, 30eqeq12d 2767 . . . . . . . . . 10 (𝑥 = (𝑅𝑘) → ((𝐼‘(𝐹𝑥)) = (𝐼𝑥) ↔ (𝐼‘(𝐹‘(𝑅𝑘))) = (𝐼‘(𝑅𝑘))))
32 alginv.4 . . . . . . . . . 10 (𝑥𝑆 → (𝐼‘(𝐹𝑥)) = (𝐼𝑥))
3331, 32vtoclga 3404 . . . . . . . . 9 ((𝑅𝑘) ∈ 𝑆 → (𝐼‘(𝐹‘(𝑅𝑘))) = (𝐼‘(𝑅𝑘)))
3427, 33syl 17 . . . . . . . 8 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝐼‘(𝐹‘(𝑅𝑘))) = (𝐼‘(𝑅𝑘)))
3525, 34eqtrd 2786 . . . . . . 7 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅𝑘)))
3635eqeq1d 2754 . . . . . 6 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0))))
3736biimprd 238 . . . . 5 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0)) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0))))
3837expcom 450 . . . 4 (𝑘 ∈ ℕ0 → (𝐴𝑆 → ((𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0)) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)))))
3938a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝐴𝑆 → (𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0))) → (𝐴𝑆 → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)))))
404, 8, 12, 16, 17, 39nn0ind 11656 . 2 (𝐾 ∈ ℕ0 → (𝐴𝑆 → (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0))))
4140impcom 445 1 ((𝐴𝑆𝐾 ∈ ℕ0) → (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1624  wcel 2131  {csn 4313   × cxp 5256  ccom 5262   Fn wfn 6036  wf 6037  cfv 6041  (class class class)co 6805  1st c1st 7323  0cc0 10120  1c1 10121   + caddc 10123  0cn0 11476  seqcseq 12987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-n0 11477  df-z 11562  df-uz 11872  df-fz 12512  df-seq 12988
This theorem is referenced by:  eucalg  15494
  Copyright terms: Public domain W3C validator