MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  algrflem Structured version   Visualization version   GIF version

Theorem algrflem 7818
Description: Lemma for algrf 15916 and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
algrflem.1 𝐵 ∈ V
algrflem.2 𝐶 ∈ V
Assertion
Ref Expression
algrflem (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵)

Proof of Theorem algrflem
StepHypRef Expression
1 df-ov 7158 . 2 (𝐵(𝐹 ∘ 1st )𝐶) = ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩)
2 fo1st 7708 . . . 4 1st :V–onto→V
3 fof 6589 . . . 4 (1st :V–onto→V → 1st :V⟶V)
42, 3ax-mp 5 . . 3 1st :V⟶V
5 opex 5355 . . 3 𝐵, 𝐶⟩ ∈ V
6 fvco3 6759 . . 3 ((1st :V⟶V ∧ ⟨𝐵, 𝐶⟩ ∈ V) → ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩) = (𝐹‘(1st ‘⟨𝐵, 𝐶⟩)))
74, 5, 6mp2an 690 . 2 ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩) = (𝐹‘(1st ‘⟨𝐵, 𝐶⟩))
8 algrflem.1 . . . 4 𝐵 ∈ V
9 algrflem.2 . . . 4 𝐶 ∈ V
108, 9op1st 7696 . . 3 (1st ‘⟨𝐵, 𝐶⟩) = 𝐵
1110fveq2i 6672 . 2 (𝐹‘(1st ‘⟨𝐵, 𝐶⟩)) = (𝐹𝐵)
121, 7, 113eqtri 2848 1 (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2110  Vcvv 3494  cop 4572  ccom 5558  wf 6350  ontowfo 6352  cfv 6354  (class class class)co 7155  1st c1st 7686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-fo 6360  df-fv 6362  df-ov 7158  df-1st 7688
This theorem is referenced by:  fpwwe  10067  seq1st  15914  algrf  15916  algrp1  15917  dvnff  24519  dvnp1  24521
  Copyright terms: Public domain W3C validator