Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  allbutfiinf Structured version   Visualization version   GIF version

Theorem allbutfiinf 41687
Description: Given a "for all but finitely many" condition, the condition holds from 𝑁 on. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
allbutfiinf.z 𝑍 = (ℤ𝑀)
allbutfiinf.a 𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
allbutfiinf.x (𝜑𝑋𝐴)
allbutfiinf.n 𝑁 = inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < )
Assertion
Ref Expression
allbutfiinf (𝜑 → (𝑁𝑍 ∧ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
Distinct variable groups:   𝐵,𝑛   𝑚,𝑋,𝑛   𝑚,𝑍,𝑛
Allowed substitution hints:   𝜑(𝑚,𝑛)   𝐴(𝑚,𝑛)   𝐵(𝑚)   𝑀(𝑚,𝑛)   𝑁(𝑚,𝑛)

Proof of Theorem allbutfiinf
StepHypRef Expression
1 ssrab2 4055 . . 3 {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ⊆ 𝑍
2 allbutfiinf.n . . . . 5 𝑁 = inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < )
32a1i 11 . . . 4 (𝜑𝑁 = inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < ))
4 allbutfiinf.z . . . . . . 7 𝑍 = (ℤ𝑀)
51, 4sseqtri 4002 . . . . . 6 {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ⊆ (ℤ𝑀)
65a1i 11 . . . . 5 (𝜑 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ⊆ (ℤ𝑀))
7 allbutfiinf.x . . . . . . 7 (𝜑𝑋𝐴)
8 allbutfiinf.a . . . . . . . 8 𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
94, 8allbutfi 41658 . . . . . . 7 (𝑋𝐴 ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
107, 9sylib 220 . . . . . 6 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
11 nfrab1 3384 . . . . . . . . 9 𝑛{𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}
12 nfcv 2977 . . . . . . . . 9 𝑛
1311, 12nfne 3119 . . . . . . . 8 𝑛{𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅
14 rabid 3378 . . . . . . . . . . . 12 (𝑛 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ↔ (𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
1514bicomi 226 . . . . . . . . . . 11 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) ↔ 𝑛 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
1615biimpi 218 . . . . . . . . . 10 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → 𝑛 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
1716ne0d 4300 . . . . . . . . 9 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅)
1817ex 415 . . . . . . . 8 (𝑛𝑍 → (∀𝑚 ∈ (ℤ𝑛)𝑋𝐵 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅))
1913, 18rexlimi 3315 . . . . . . 7 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅)
2019a1i 11 . . . . . 6 (𝜑 → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅))
2110, 20mpd 15 . . . . 5 (𝜑 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅)
22 infssuzcl 12326 . . . . 5 (({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ⊆ (ℤ𝑀) ∧ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅) → inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < ) ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
236, 21, 22syl2anc 586 . . . 4 (𝜑 → inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < ) ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
243, 23eqeltrd 2913 . . 3 (𝜑𝑁 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
251, 24sseldi 3964 . 2 (𝜑𝑁𝑍)
26 nfcv 2977 . . . . . . . 8 𝑛
27 nfcv 2977 . . . . . . . 8 𝑛 <
2811, 26, 27nfinf 8940 . . . . . . 7 𝑛inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < )
292, 28nfcxfr 2975 . . . . . 6 𝑛𝑁
30 nfcv 2977 . . . . . 6 𝑛𝑍
31 nfcv 2977 . . . . . . . 8 𝑛
3231, 29nffv 6674 . . . . . . 7 𝑛(ℤ𝑁)
33 nfv 1911 . . . . . . 7 𝑛 𝑋𝐵
3432, 33nfralw 3225 . . . . . 6 𝑛𝑚 ∈ (ℤ𝑁)𝑋𝐵
35 nfcv 2977 . . . . . . 7 𝑚(ℤ𝑛)
36 nfcv 2977 . . . . . . . 8 𝑚
37 nfra1 3219 . . . . . . . . . . 11 𝑚𝑚 ∈ (ℤ𝑛)𝑋𝐵
38 nfcv 2977 . . . . . . . . . . 11 𝑚𝑍
3937, 38nfrabw 3385 . . . . . . . . . 10 𝑚{𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}
40 nfcv 2977 . . . . . . . . . 10 𝑚
41 nfcv 2977 . . . . . . . . . 10 𝑚 <
4239, 40, 41nfinf 8940 . . . . . . . . 9 𝑚inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < )
432, 42nfcxfr 2975 . . . . . . . 8 𝑚𝑁
4436, 43nffv 6674 . . . . . . 7 𝑚(ℤ𝑁)
45 fveq2 6664 . . . . . . 7 (𝑛 = 𝑁 → (ℤ𝑛) = (ℤ𝑁))
4635, 44, 45raleqd 41398 . . . . . 6 (𝑛 = 𝑁 → (∀𝑚 ∈ (ℤ𝑛)𝑋𝐵 ↔ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
4729, 30, 34, 46elrabf 3675 . . . . 5 (𝑁 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ↔ (𝑁𝑍 ∧ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
4847biimpi 218 . . . 4 (𝑁 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} → (𝑁𝑍 ∧ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
4948simprd 498 . . 3 (𝑁 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} → ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵)
5024, 49syl 17 . 2 (𝜑 → ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵)
5125, 50jca 514 1 (𝜑 → (𝑁𝑍 ∧ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  wss 3935  c0 4290   ciun 4911   ciin 4912  cfv 6349  infcinf 8899  cr 10530   < clt 10669  cuz 12237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator