Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  alrimiOLD Structured version   Visualization version   GIF version

Theorem alrimiOLD 2191
 Description: Obsolete proof of alrimi 2080 as of 6-Oct-2021. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
alrimiOLD.1 𝑥𝜑
alrimiOLD.2 (𝜑𝜓)
Assertion
Ref Expression
alrimiOLD (𝜑 → ∀𝑥𝜓)

Proof of Theorem alrimiOLD
StepHypRef Expression
1 alrimiOLD.1 . . 3 𝑥𝜑
21nfriOLD 2188 . 2 (𝜑 → ∀𝑥𝜑)
3 alrimiOLD.2 . 2 (𝜑𝜓)
42, 3alrimih 1748 1 (𝜑 → ∀𝑥𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1478  ℲwnfOLD 1706 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-12 2044 This theorem depends on definitions:  df-bi 197  df-ex 1702  df-nfOLD 1718 This theorem is referenced by:  nfdOLD  2192
 Copyright terms: Public domain W3C validator