![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alrimivv | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2113 and 19.21v 1908. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
alrimivv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | alrimiv 1895 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
3 | 2 | alrimiv 1895 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1762 ax-4 1777 ax-5 1879 |
This theorem is referenced by: 2ax5 1906 2mo 2580 euind 3426 sbnfc2 4040 uniintsn 4546 eusvnf 4891 ssopab2dv 5033 ssrel 5241 ssrelOLD 5242 relssdv 5246 eqrelrdv 5250 eqbrrdv 5251 eqrelrdv2 5253 ssrelrel 5254 iss 5482 ordelord 5783 suctr 5846 suctrOLD 5847 funssres 5968 funun 5970 fununi 6002 fsn 6442 opabresex2d 6738 fvmptopab 6739 ovg 6841 wemoiso 7195 wemoiso2 7196 oprabexd 7197 omeu 7710 qliftfund 7876 eroveu 7885 fpwwe2lem11 9500 addsrmo 9932 mulsrmo 9933 seqf1o 12882 fi1uzind 13317 brfi1indALT 13320 summo 14492 prodmo 14710 pceu 15598 invfun 16471 initoeu2lem2 16712 psss 17261 psgneu 17972 gsumval3eu 18351 hausflimi 21831 vitalilem3 23424 plyexmo 24113 tglineintmo 25582 frgr3vlem1 27253 3vfriswmgrlem 27257 frgr2wwlk1 27309 pjhthmo 28289 chscl 28628 bnj1379 31027 bnj580 31109 bnj1321 31221 cvmlift2lem12 31422 mclsssvlem 31585 mclsax 31592 mclsind 31593 noprefixmo 31973 nosupno 31974 lineintmo 32389 trer 32435 mbfresfi 33586 unirep 33637 iss2 34252 prter1 34483 islpoldN 37090 ismrcd2 37579 ismrc 37581 truniALT 39068 gen12 39160 sspwtrALT 39366 sspwtrALT2 39372 suctrALT 39375 suctrALT2 39386 trintALT 39431 suctrALTcf 39472 suctrALT3 39474 rlimdmafv 41578 opabresex0d 41627 spr0nelg 42051 sprsymrelfvlem 42065 |
Copyright terms: Public domain | W3C validator |