Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopelaltxp Structured version   Visualization version   GIF version

Theorem altopelaltxp 33437
Description: Alternate ordered pair membership in a Cartesian product. Note that, unlike opelxp 5590, there is no sethood requirement here. (Contributed by Scott Fenton, 22-Mar-2012.)
Assertion
Ref Expression
altopelaltxp (⟪𝑋, 𝑌⟫ ∈ (𝐴 ×× 𝐵) ↔ (𝑋𝐴𝑌𝐵))

Proof of Theorem altopelaltxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elaltxp 33436 . 2 (⟪𝑋, 𝑌⟫ ∈ (𝐴 ×× 𝐵) ↔ ∃𝑥𝐴𝑦𝐵𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫)
2 reeanv 3367 . . 3 (∃𝑥𝐴𝑦𝐵 (𝑥 = 𝑋𝑦 = 𝑌) ↔ (∃𝑥𝐴 𝑥 = 𝑋 ∧ ∃𝑦𝐵 𝑦 = 𝑌))
3 eqcom 2828 . . . . 5 (⟪𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫ ↔ ⟪𝑥, 𝑦⟫ = ⟪𝑋, 𝑌⟫)
4 vex 3497 . . . . . 6 𝑥 ∈ V
5 vex 3497 . . . . . 6 𝑦 ∈ V
64, 5altopth 33430 . . . . 5 (⟪𝑥, 𝑦⟫ = ⟪𝑋, 𝑌⟫ ↔ (𝑥 = 𝑋𝑦 = 𝑌))
73, 6bitri 277 . . . 4 (⟪𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫ ↔ (𝑥 = 𝑋𝑦 = 𝑌))
872rexbii 3248 . . 3 (∃𝑥𝐴𝑦𝐵𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫ ↔ ∃𝑥𝐴𝑦𝐵 (𝑥 = 𝑋𝑦 = 𝑌))
9 risset 3267 . . . 4 (𝑋𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝑋)
10 risset 3267 . . . 4 (𝑌𝐵 ↔ ∃𝑦𝐵 𝑦 = 𝑌)
119, 10anbi12i 628 . . 3 ((𝑋𝐴𝑌𝐵) ↔ (∃𝑥𝐴 𝑥 = 𝑋 ∧ ∃𝑦𝐵 𝑦 = 𝑌))
122, 8, 113bitr4i 305 . 2 (∃𝑥𝐴𝑦𝐵𝑋, 𝑌⟫ = ⟪𝑥, 𝑦⟫ ↔ (𝑋𝐴𝑌𝐵))
131, 12bitri 277 1 (⟪𝑋, 𝑌⟫ ∈ (𝐴 ×× 𝐵) ↔ (𝑋𝐴𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1533  wcel 2110  wrex 3139  caltop 33417   ×× caltxp 33418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-sn 4567  df-pr 4569  df-altop 33419  df-altxp 33420
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator