MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alzdvds Structured version   Visualization version   GIF version

Theorem alzdvds 14966
Description: Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
alzdvds (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥𝑁𝑁 = 0))
Distinct variable group:   𝑥,𝑁

Proof of Theorem alzdvds
StepHypRef Expression
1 nnssz 11341 . . . . . . . 8 ℕ ⊆ ℤ
2 zcn 11326 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
32abscld 14109 . . . . . . . . 9 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ)
4 arch 11233 . . . . . . . . 9 ((abs‘𝑁) ∈ ℝ → ∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥)
53, 4syl 17 . . . . . . . 8 (𝑁 ∈ ℤ → ∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥)
6 ssrexv 3646 . . . . . . . 8 (ℕ ⊆ ℤ → (∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥 → ∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥))
71, 5, 6mpsyl 68 . . . . . . 7 (𝑁 ∈ ℤ → ∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥)
8 zre 11325 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
9 ltnle 10061 . . . . . . . . . 10 (((abs‘𝑁) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘𝑁) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘𝑁)))
103, 8, 9syl2an 494 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((abs‘𝑁) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘𝑁)))
1110rexbidva 3042 . . . . . . . 8 (𝑁 ∈ ℤ → (∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥 ↔ ∃𝑥 ∈ ℤ ¬ 𝑥 ≤ (abs‘𝑁)))
12 rexnal 2989 . . . . . . . 8 (∃𝑥 ∈ ℤ ¬ 𝑥 ≤ (abs‘𝑁) ↔ ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))
1311, 12syl6bb 276 . . . . . . 7 (𝑁 ∈ ℤ → (∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥 ↔ ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)))
147, 13mpbid 222 . . . . . 6 (𝑁 ∈ ℤ → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))
1514adantl 482 . . . . 5 ((∀𝑥 ∈ ℤ 𝑥𝑁𝑁 ∈ ℤ) → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))
16 ralim 2943 . . . . . . 7 (∀𝑥 ∈ ℤ (𝑥𝑁𝑥 ≤ (abs‘𝑁)) → (∀𝑥 ∈ ℤ 𝑥𝑁 → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)))
17 dvdsleabs 14957 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑥𝑁𝑥 ≤ (abs‘𝑁)))
18173expb 1263 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑥𝑁𝑥 ≤ (abs‘𝑁)))
1918expcom 451 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑥 ∈ ℤ → (𝑥𝑁𝑥 ≤ (abs‘𝑁))))
2019ralrimiv 2959 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∀𝑥 ∈ ℤ (𝑥𝑁𝑥 ≤ (abs‘𝑁)))
2116, 20syl11 33 . . . . . 6 (∀𝑥 ∈ ℤ 𝑥𝑁 → ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)))
2221expdimp 453 . . . . 5 ((∀𝑥 ∈ ℤ 𝑥𝑁𝑁 ∈ ℤ) → (𝑁 ≠ 0 → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)))
2315, 22mtod 189 . . . 4 ((∀𝑥 ∈ ℤ 𝑥𝑁𝑁 ∈ ℤ) → ¬ 𝑁 ≠ 0)
24 nne 2794 . . . 4 𝑁 ≠ 0 ↔ 𝑁 = 0)
2523, 24sylib 208 . . 3 ((∀𝑥 ∈ ℤ 𝑥𝑁𝑁 ∈ ℤ) → 𝑁 = 0)
2625expcom 451 . 2 (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥𝑁𝑁 = 0))
27 dvds0 14921 . . . 4 (𝑥 ∈ ℤ → 𝑥 ∥ 0)
28 breq2 4617 . . . 4 (𝑁 = 0 → (𝑥𝑁𝑥 ∥ 0))
2927, 28syl5ibr 236 . . 3 (𝑁 = 0 → (𝑥 ∈ ℤ → 𝑥𝑁))
3029ralrimiv 2959 . 2 (𝑁 = 0 → ∀𝑥 ∈ ℤ 𝑥𝑁)
3126, 30impbid1 215 1 (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥𝑁𝑁 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  wss 3555   class class class wbr 4613  cfv 5847  cr 9879  0cc0 9880   < clt 10018  cle 10019  cn 10964  cz 11321  abscabs 13908  cdvds 14907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-dvds 14908
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator