Users' Mathboxes Mathbox for Kunhao Zheng < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  amgmwlem Structured version   Visualization version   GIF version

Theorem amgmwlem 44897
Description: Weighted version of amgmlem 25561. (Contributed by Kunhao Zheng, 19-Jun-2021.)
Hypotheses
Ref Expression
amgmwlem.0 𝑀 = (mulGrp‘ℂfld)
amgmwlem.1 (𝜑𝐴 ∈ Fin)
amgmwlem.2 (𝜑𝐴 ≠ ∅)
amgmwlem.3 (𝜑𝐹:𝐴⟶ℝ+)
amgmwlem.4 (𝜑𝑊:𝐴⟶ℝ+)
amgmwlem.5 (𝜑 → (ℂfld Σg 𝑊) = 1)
Assertion
Ref Expression
amgmwlem (𝜑 → (𝑀 Σg (𝐹f𝑐𝑊)) ≤ (ℂfld Σg (𝐹f · 𝑊)))

Proof of Theorem amgmwlem
Dummy variables 𝑎 𝑏 𝑠 𝑢 𝑣 𝑘 𝑦 𝑤 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 amgmwlem.1 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
2 amgmwlem.3 . . . . . . . . . . . 12 (𝜑𝐹:𝐴⟶ℝ+)
32ffvelrnda 6845 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℝ+)
4 amgmwlem.4 . . . . . . . . . . . . 13 (𝜑𝑊:𝐴⟶ℝ+)
54ffvelrnda 6845 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝑊𝑘) ∈ ℝ+)
65rpred 12425 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑊𝑘) ∈ ℝ)
73, 6rpcxpcld 25309 . . . . . . . . . 10 ((𝜑𝑘𝐴) → ((𝐹𝑘)↑𝑐(𝑊𝑘)) ∈ ℝ+)
87relogcld 25200 . . . . . . . . 9 ((𝜑𝑘𝐴) → (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) ∈ ℝ)
98recnd 10663 . . . . . . . 8 ((𝜑𝑘𝐴) → (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) ∈ ℂ)
101, 9gsumfsum 20606 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))) = Σ𝑘𝐴 (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
119negnegd 10982 . . . . . . . 8 ((𝜑𝑘𝐴) → --(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
1211sumeq2dv 15054 . . . . . . 7 (𝜑 → Σ𝑘𝐴 --(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = Σ𝑘𝐴 (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
138renegcld 11061 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) ∈ ℝ)
1413recnd 10663 . . . . . . . . 9 ((𝜑𝑘𝐴) → -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) ∈ ℂ)
151, 14fsumneg 15136 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 --(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = -Σ𝑘𝐴 -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
163, 6logcxpd 25310 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = ((𝑊𝑘) · (log‘(𝐹𝑘))))
1716negeqd 10874 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = -((𝑊𝑘) · (log‘(𝐹𝑘))))
1817sumeq2dv 15054 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = Σ𝑘𝐴 -((𝑊𝑘) · (log‘(𝐹𝑘))))
1918negeqd 10874 . . . . . . . 8 (𝜑 → -Σ𝑘𝐴 -(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = -Σ𝑘𝐴 -((𝑊𝑘) · (log‘(𝐹𝑘))))
205rpcnd 12427 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝑊𝑘) ∈ ℂ)
213relogcld 25200 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (log‘(𝐹𝑘)) ∈ ℝ)
2221recnd 10663 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (log‘(𝐹𝑘)) ∈ ℂ)
2320, 22mulneg2d 11088 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝑊𝑘) · -(log‘(𝐹𝑘))) = -((𝑊𝑘) · (log‘(𝐹𝑘))))
2423eqcomd 2827 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -((𝑊𝑘) · (log‘(𝐹𝑘))) = ((𝑊𝑘) · -(log‘(𝐹𝑘))))
2524sumeq2dv 15054 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 -((𝑊𝑘) · (log‘(𝐹𝑘))) = Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
2625negeqd 10874 . . . . . . . 8 (𝜑 → -Σ𝑘𝐴 -((𝑊𝑘) · (log‘(𝐹𝑘))) = -Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
2715, 19, 263eqtrd 2860 . . . . . . 7 (𝜑 → Σ𝑘𝐴 --(log‘((𝐹𝑘)↑𝑐(𝑊𝑘))) = -Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
2810, 12, 273eqtr2rd 2863 . . . . . 6 (𝜑 → -Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))) = (ℂfld Σg (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))))
29 negex 10878 . . . . . . . . . . 11 -(log‘(𝐹𝑘)) ∈ V
3029a1i 11 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ V)
314feqmptd 6727 . . . . . . . . . 10 (𝜑𝑊 = (𝑘𝐴 ↦ (𝑊𝑘)))
32 eqidd 2822 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 ↦ -(log‘(𝐹𝑘))) = (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))
331, 5, 30, 31, 32offval2 7420 . . . . . . . . 9 (𝜑 → (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = (𝑘𝐴 ↦ ((𝑊𝑘) · -(log‘(𝐹𝑘)))))
3433oveq2d 7166 . . . . . . . 8 (𝜑 → (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = (ℂfld Σg (𝑘𝐴 ↦ ((𝑊𝑘) · -(log‘(𝐹𝑘))))))
3522negcld 10978 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ ℂ)
3620, 35mulcld 10655 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((𝑊𝑘) · -(log‘(𝐹𝑘))) ∈ ℂ)
371, 36gsumfsum 20606 . . . . . . . 8 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((𝑊𝑘) · -(log‘(𝐹𝑘))))) = Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
3834, 37eqtrd 2856 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
3938negeqd 10874 . . . . . 6 (𝜑 → -(ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = -Σ𝑘𝐴 ((𝑊𝑘) · -(log‘(𝐹𝑘))))
40 relogf1o 25144 . . . . . . . . . 10 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
41 f1of 6609 . . . . . . . . . 10 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
4240, 41ax-mp 5 . . . . . . . . 9 (log ↾ ℝ+):ℝ+⟶ℝ
43 rpre 12391 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
4443anim2i 618 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑥 ∈ ℝ+𝑦 ∈ ℝ))
4544adantl 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥 ∈ ℝ+𝑦 ∈ ℝ))
46 rpcxpcl 25253 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ) → (𝑥𝑐𝑦) ∈ ℝ+)
4745, 46syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥𝑐𝑦) ∈ ℝ+)
48 inidm 4194 . . . . . . . . . 10 (𝐴𝐴) = 𝐴
4947, 2, 4, 1, 1, 48off 7418 . . . . . . . . 9 (𝜑 → (𝐹f𝑐𝑊):𝐴⟶ℝ+)
50 fcompt 6889 . . . . . . . . 9 (((log ↾ ℝ+):ℝ+⟶ℝ ∧ (𝐹f𝑐𝑊):𝐴⟶ℝ+) → ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊)) = (𝑘𝐴 ↦ ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘))))
5142, 49, 50sylancr 589 . . . . . . . 8 (𝜑 → ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊)) = (𝑘𝐴 ↦ ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘))))
5249ffvelrnda 6845 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝐹f𝑐𝑊)‘𝑘) ∈ ℝ+)
53 fvres 6683 . . . . . . . . . . 11 (((𝐹f𝑐𝑊)‘𝑘) ∈ ℝ+ → ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘)) = (log‘((𝐹f𝑐𝑊)‘𝑘)))
5452, 53syl 17 . . . . . . . . . 10 ((𝜑𝑘𝐴) → ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘)) = (log‘((𝐹f𝑐𝑊)‘𝑘)))
552ffnd 6509 . . . . . . . . . . . 12 (𝜑𝐹 Fn 𝐴)
564ffnd 6509 . . . . . . . . . . . 12 (𝜑𝑊 Fn 𝐴)
57 eqidd 2822 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝐹𝑘) = (𝐹𝑘))
58 eqidd 2822 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝑊𝑘) = (𝑊𝑘))
5955, 56, 1, 1, 48, 57, 58ofval 7412 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝐹f𝑐𝑊)‘𝑘) = ((𝐹𝑘)↑𝑐(𝑊𝑘)))
6059fveq2d 6668 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (log‘((𝐹f𝑐𝑊)‘𝑘)) = (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
6154, 60eqtrd 2856 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘)) = (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))
6261mpteq2dva 5153 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↦ ((log ↾ ℝ+)‘((𝐹f𝑐𝑊)‘𝑘))) = (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘)))))
6351, 62eqtrd 2856 . . . . . . 7 (𝜑 → ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊)) = (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘)))))
6463oveq2d 7166 . . . . . 6 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))) = (ℂfld Σg (𝑘𝐴 ↦ (log‘((𝐹𝑘)↑𝑐(𝑊𝑘))))))
6528, 39, 643eqtr4d 2866 . . . . 5 (𝜑 → -(ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = (ℂfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))))
66 amgmwlem.0 . . . . . . . . . . . . 13 𝑀 = (mulGrp‘ℂfld)
6766oveq1i 7160 . . . . . . . . . . . 12 (𝑀s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
6867rpmsubg 20603 . . . . . . . . . . 11 + ∈ (SubGrp‘(𝑀s (ℂ ∖ {0})))
69 subgsubm 18295 . . . . . . . . . . 11 (ℝ+ ∈ (SubGrp‘(𝑀s (ℂ ∖ {0}))) → ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))))
7068, 69ax-mp 5 . . . . . . . . . 10 + ∈ (SubMnd‘(𝑀s (ℂ ∖ {0})))
71 cnring 20561 . . . . . . . . . . 11 fld ∈ Ring
72 cnfldbas 20543 . . . . . . . . . . . . 13 ℂ = (Base‘ℂfld)
73 cnfld0 20563 . . . . . . . . . . . . 13 0 = (0g‘ℂfld)
74 cndrng 20568 . . . . . . . . . . . . 13 fld ∈ DivRing
7572, 73, 74drngui 19502 . . . . . . . . . . . 12 (ℂ ∖ {0}) = (Unit‘ℂfld)
7675, 66unitsubm 19414 . . . . . . . . . . 11 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘𝑀))
77 eqid 2821 . . . . . . . . . . . 12 (𝑀s (ℂ ∖ {0})) = (𝑀s (ℂ ∖ {0}))
7877subsubm 17975 . . . . . . . . . . 11 ((ℂ ∖ {0}) ∈ (SubMnd‘𝑀) → (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))))
7971, 76, 78mp2b 10 . . . . . . . . . 10 (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0})))
8070, 79mpbi 232 . . . . . . . . 9 (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))
8180simpli 486 . . . . . . . 8 + ∈ (SubMnd‘𝑀)
82 eqid 2821 . . . . . . . . 9 (𝑀s+) = (𝑀s+)
8382submbas 17973 . . . . . . . 8 (ℝ+ ∈ (SubMnd‘𝑀) → ℝ+ = (Base‘(𝑀s+)))
8481, 83ax-mp 5 . . . . . . 7 + = (Base‘(𝑀s+))
85 cnfld1 20564 . . . . . . . . 9 1 = (1r‘ℂfld)
8666, 85ringidval 19247 . . . . . . . 8 1 = (0g𝑀)
87 eqid 2821 . . . . . . . . . 10 (0g𝑀) = (0g𝑀)
8882, 87subm0 17974 . . . . . . . . 9 (ℝ+ ∈ (SubMnd‘𝑀) → (0g𝑀) = (0g‘(𝑀s+)))
8981, 88ax-mp 5 . . . . . . . 8 (0g𝑀) = (0g‘(𝑀s+))
9086, 89eqtri 2844 . . . . . . 7 1 = (0g‘(𝑀s+))
91 cncrng 20560 . . . . . . . . 9 fld ∈ CRing
9266crngmgp 19299 . . . . . . . . 9 (ℂfld ∈ CRing → 𝑀 ∈ CMnd)
9391, 92mp1i 13 . . . . . . . 8 (𝜑𝑀 ∈ CMnd)
9482submmnd 17972 . . . . . . . . 9 (ℝ+ ∈ (SubMnd‘𝑀) → (𝑀s+) ∈ Mnd)
9581, 94mp1i 13 . . . . . . . 8 (𝜑 → (𝑀s+) ∈ Mnd)
9682subcmn 18951 . . . . . . . 8 ((𝑀 ∈ CMnd ∧ (𝑀s+) ∈ Mnd) → (𝑀s+) ∈ CMnd)
9793, 95, 96syl2anc 586 . . . . . . 7 (𝜑 → (𝑀s+) ∈ CMnd)
98 resubdrg 20746 . . . . . . . . . 10 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
9998simpli 486 . . . . . . . . 9 ℝ ∈ (SubRing‘ℂfld)
100 df-refld 20743 . . . . . . . . . 10 fld = (ℂflds ℝ)
101100subrgring 19532 . . . . . . . . 9 (ℝ ∈ (SubRing‘ℂfld) → ℝfld ∈ Ring)
10299, 101ax-mp 5 . . . . . . . 8 fld ∈ Ring
103 ringmnd 19300 . . . . . . . 8 (ℝfld ∈ Ring → ℝfld ∈ Mnd)
104102, 103mp1i 13 . . . . . . 7 (𝜑 → ℝfld ∈ Mnd)
10566oveq1i 7160 . . . . . . . . . 10 (𝑀s+) = ((mulGrp‘ℂfld) ↾s+)
106105reloggim 25176 . . . . . . . . 9 (log ↾ ℝ+) ∈ ((𝑀s+) GrpIso ℝfld)
107 gimghm 18398 . . . . . . . . 9 ((log ↾ ℝ+) ∈ ((𝑀s+) GrpIso ℝfld) → (log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld))
108106, 107ax-mp 5 . . . . . . . 8 (log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld)
109 ghmmhm 18362 . . . . . . . 8 ((log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld) → (log ↾ ℝ+) ∈ ((𝑀s+) MndHom ℝfld))
110108, 109mp1i 13 . . . . . . 7 (𝜑 → (log ↾ ℝ+) ∈ ((𝑀s+) MndHom ℝfld))
111 1red 10636 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
11249, 1, 111fdmfifsupp 8837 . . . . . . 7 (𝜑 → (𝐹f𝑐𝑊) finSupp 1)
11384, 90, 97, 104, 1, 110, 49, 112gsummhm 19052 . . . . . 6 (𝜑 → (ℝfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))) = ((log ↾ ℝ+)‘((𝑀s+) Σg (𝐹f𝑐𝑊))))
114 subrgsubg 19535 . . . . . . . . . 10 (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld))
11599, 114ax-mp 5 . . . . . . . . 9 ℝ ∈ (SubGrp‘ℂfld)
116 subgsubm 18295 . . . . . . . . 9 (ℝ ∈ (SubGrp‘ℂfld) → ℝ ∈ (SubMnd‘ℂfld))
117115, 116ax-mp 5 . . . . . . . 8 ℝ ∈ (SubMnd‘ℂfld)
118117a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ (SubMnd‘ℂfld))
11940, 41mp1i 13 . . . . . . . 8 (𝜑 → (log ↾ ℝ+):ℝ+⟶ℝ)
120 fco 6525 . . . . . . . 8 (((log ↾ ℝ+):ℝ+⟶ℝ ∧ (𝐹f𝑐𝑊):𝐴⟶ℝ+) → ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊)):𝐴⟶ℝ)
121119, 49, 120syl2anc 586 . . . . . . 7 (𝜑 → ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊)):𝐴⟶ℝ)
1221, 118, 121, 100gsumsubm 17993 . . . . . 6 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))) = (ℝfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))))
12381a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ∈ (SubMnd‘𝑀))
1241, 123, 49, 82gsumsubm 17993 . . . . . . 7 (𝜑 → (𝑀 Σg (𝐹f𝑐𝑊)) = ((𝑀s+) Σg (𝐹f𝑐𝑊)))
125124fveq2d 6668 . . . . . 6 (𝜑 → ((log ↾ ℝ+)‘(𝑀 Σg (𝐹f𝑐𝑊))) = ((log ↾ ℝ+)‘((𝑀s+) Σg (𝐹f𝑐𝑊))))
126113, 122, 1253eqtr4d 2866 . . . . 5 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ (𝐹f𝑐𝑊))) = ((log ↾ ℝ+)‘(𝑀 Σg (𝐹f𝑐𝑊))))
12786, 93, 1, 123, 49, 112gsumsubmcl 19033 . . . . . 6 (𝜑 → (𝑀 Σg (𝐹f𝑐𝑊)) ∈ ℝ+)
128 fvres 6683 . . . . . 6 ((𝑀 Σg (𝐹f𝑐𝑊)) ∈ ℝ+ → ((log ↾ ℝ+)‘(𝑀 Σg (𝐹f𝑐𝑊))) = (log‘(𝑀 Σg (𝐹f𝑐𝑊))))
129127, 128syl 17 . . . . 5 (𝜑 → ((log ↾ ℝ+)‘(𝑀 Σg (𝐹f𝑐𝑊))) = (log‘(𝑀 Σg (𝐹f𝑐𝑊))))
13065, 126, 1293eqtrd 2860 . . . 4 (𝜑 → -(ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) = (log‘(𝑀 Σg (𝐹f𝑐𝑊))))
131 simprl 769 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑥 ∈ ℝ+)
132131rpcnd 12427 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑥 ∈ ℂ)
133 simprr 771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
134133rpcnd 12427 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → 𝑦 ∈ ℂ)
135132, 134mulcomd 10656 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
1361, 4, 2, 135caofcom 7435 . . . . . . . 8 (𝜑 → (𝑊f · 𝐹) = (𝐹f · 𝑊))
137136oveq2d 7166 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑊f · 𝐹)) = (ℂfld Σg (𝐹f · 𝑊)))
1382feqmptd 6727 . . . . . . . . . . 11 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
1391, 5, 3, 31, 138offval2 7420 . . . . . . . . . 10 (𝜑 → (𝑊f · 𝐹) = (𝑘𝐴 ↦ ((𝑊𝑘) · (𝐹𝑘))))
140139oveq2d 7166 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑊f · 𝐹)) = (ℂfld Σg (𝑘𝐴 ↦ ((𝑊𝑘) · (𝐹𝑘)))))
1415, 3rpmulcld 12441 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝑊𝑘) · (𝐹𝑘)) ∈ ℝ+)
142141rpcnd 12427 . . . . . . . . . 10 ((𝜑𝑘𝐴) → ((𝑊𝑘) · (𝐹𝑘)) ∈ ℂ)
1431, 142gsumfsum 20606 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((𝑊𝑘) · (𝐹𝑘)))) = Σ𝑘𝐴 ((𝑊𝑘) · (𝐹𝑘)))
144140, 143eqtrd 2856 . . . . . . . 8 (𝜑 → (ℂfld Σg (𝑊f · 𝐹)) = Σ𝑘𝐴 ((𝑊𝑘) · (𝐹𝑘)))
145 amgmwlem.2 . . . . . . . . 9 (𝜑𝐴 ≠ ∅)
1461, 145, 141fsumrpcl 15088 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 ((𝑊𝑘) · (𝐹𝑘)) ∈ ℝ+)
147144, 146eqeltrd 2913 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑊f · 𝐹)) ∈ ℝ+)
148137, 147eqeltrrd 2914 . . . . . 6 (𝜑 → (ℂfld Σg (𝐹f · 𝑊)) ∈ ℝ+)
149148relogcld 25200 . . . . 5 (𝜑 → (log‘(ℂfld Σg (𝐹f · 𝑊))) ∈ ℝ)
150 ringcmn 19325 . . . . . . 7 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
15171, 150mp1i 13 . . . . . 6 (𝜑 → ℂfld ∈ CMnd)
152 remulcl 10616 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
153152adantl 484 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
154 rpssre 12390 . . . . . . . 8 + ⊆ ℝ
155 fss 6521 . . . . . . . 8 ((𝑊:𝐴⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → 𝑊:𝐴⟶ℝ)
1564, 154, 155sylancl 588 . . . . . . 7 (𝜑𝑊:𝐴⟶ℝ)
15721renegcld 11061 . . . . . . . 8 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ ℝ)
158157fmpttd 6873 . . . . . . 7 (𝜑 → (𝑘𝐴 ↦ -(log‘(𝐹𝑘))):𝐴⟶ℝ)
159153, 156, 158, 1, 1, 48off 7418 . . . . . 6 (𝜑 → (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))):𝐴⟶ℝ)
160 0red 10638 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
161159, 1, 160fdmfifsupp 8837 . . . . . 6 (𝜑 → (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) finSupp 0)
16273, 151, 1, 118, 159, 161gsumsubmcl 19033 . . . . 5 (𝜑 → (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) ∈ ℝ)
163154a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ ℝ)
164 simpr 487 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
165164relogcld 25200 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+) → (log‘𝑤) ∈ ℝ)
166165renegcld 11061 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+) → -(log‘𝑤) ∈ ℝ)
167166fmpttd 6873 . . . . . . . 8 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)):ℝ+⟶ℝ)
168 simpl 485 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ+)
169 ioorp 12808 . . . . . . . . . . . 12 (0(,)+∞) = ℝ+
170168, 169eleqtrrdi 2924 . . . . . . . . . . 11 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ (0(,)+∞))
171 simpr 487 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ+)
172171, 169eleqtrrdi 2924 . . . . . . . . . . 11 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ (0(,)+∞))
173 iccssioo2 12803 . . . . . . . . . . 11 ((𝑎 ∈ (0(,)+∞) ∧ 𝑏 ∈ (0(,)+∞)) → (𝑎[,]𝑏) ⊆ (0(,)+∞))
174170, 172, 173syl2anc 586 . . . . . . . . . 10 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎[,]𝑏) ⊆ (0(,)+∞))
175174, 169sseqtrdi 4016 . . . . . . . . 9 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎[,]𝑏) ⊆ ℝ+)
176175adantl 484 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎[,]𝑏) ⊆ ℝ+)
177 ioossico 12820 . . . . . . . . . 10 (0(,)+∞) ⊆ (0[,)+∞)
178169, 177eqsstrri 4001 . . . . . . . . 9 + ⊆ (0[,)+∞)
179 fss 6521 . . . . . . . . 9 ((𝑊:𝐴⟶ℝ+ ∧ ℝ+ ⊆ (0[,)+∞)) → 𝑊:𝐴⟶(0[,)+∞))
1804, 178, 179sylancl 588 . . . . . . . 8 (𝜑𝑊:𝐴⟶(0[,)+∞))
181 0lt1 11156 . . . . . . . . 9 0 < 1
182 amgmwlem.5 . . . . . . . . 9 (𝜑 → (ℂfld Σg 𝑊) = 1)
183181, 182breqtrrid 5096 . . . . . . . 8 (𝜑 → 0 < (ℂfld Σg 𝑊))
184 logccv 25240 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
1851843adant1 1126 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
186 elioore 12762 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0(,)1) → 𝑡 ∈ ℝ)
1871863ad2ant3 1131 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℝ)
188 simp21 1202 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑥 ∈ ℝ+)
189188relogcld 25200 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈ ℝ)
190187, 189remulcld 10665 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℝ)
191 1red 10636 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0(,)1) → 1 ∈ ℝ)
192191, 186resubcld 11062 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0(,)1) → (1 − 𝑡) ∈ ℝ)
1931923ad2ant3 1131 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℝ)
194 simp22 1203 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑦 ∈ ℝ+)
195194relogcld 25200 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈ ℝ)
196193, 195remulcld 10665 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈ ℝ)
197190, 196readdcld 10664 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) ∈ ℝ)
198 eliooord 12790 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (0(,)1) → (0 < 𝑡𝑡 < 1))
199198simpld 497 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ (0(,)1) → 0 < 𝑡)
200186, 199elrpd 12422 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0(,)1) → 𝑡 ∈ ℝ+)
2012003ad2ant3 1131 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℝ+)
202201, 188rpmulcld 12441 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · 𝑥) ∈ ℝ+)
203 0red 10638 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (0(,)1) → 0 ∈ ℝ)
204198simprd 498 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ (0(,)1) → 𝑡 < 1)
205 1m0e1 11752 . . . . . . . . . . . . . . . . . . 19 (1 − 0) = 1
206204, 205breqtrrdi 5100 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (0(,)1) → 𝑡 < (1 − 0))
207186, 191, 203, 206ltsub13d 11240 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ (0(,)1) → 0 < (1 − 𝑡))
208192, 207elrpd 12422 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0(,)1) → (1 − 𝑡) ∈ ℝ+)
2092083ad2ant3 1131 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℝ+)
210209, 194rpmulcld 12441 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · 𝑦) ∈ ℝ+)
211 rpaddcl 12405 . . . . . . . . . . . . . 14 (((𝑡 · 𝑥) ∈ ℝ+ ∧ ((1 − 𝑡) · 𝑦) ∈ ℝ+) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+)
212202, 210, 211syl2anc 586 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+)
213212relogcld 25200 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ ℝ)
214197, 213ltnegd 11212 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ↔ -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦)))))
215185, 214mpbid 234 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))
216 eqidd 2822 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)))
217 fveq2 6664 . . . . . . . . . . . . 13 (𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) → (log‘𝑤) = (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
218217adantl 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) ∧ 𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → (log‘𝑤) = (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
219218negeqd 10874 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) ∧ 𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → -(log‘𝑤) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
220 negex 10878 . . . . . . . . . . . 12 -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ V
221220a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ V)
222216, 219, 212, 221fvmptd 6769 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
223 fveq2 6664 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑥 → (log‘𝑤) = (log‘𝑥))
224223negeqd 10874 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑥 → -(log‘𝑤) = -(log‘𝑥))
225 eqid 2821 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤))
226 negex 10878 . . . . . . . . . . . . . . . 16 -(log‘𝑤) ∈ V
227224, 225, 226fvmpt3i 6767 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥))
228188, 227syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥))
229228oveq2d 7166 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) = (𝑡 · -(log‘𝑥)))
230187recnd 10663 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
231189recnd 10663 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈ ℂ)
232230, 231mulneg2d 11088 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · -(log‘𝑥)) = -(𝑡 · (log‘𝑥)))
233229, 232eqtrd 2856 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) = -(𝑡 · (log‘𝑥)))
234 fveq2 6664 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑦 → (log‘𝑤) = (log‘𝑦))
235234negeqd 10874 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑦 → -(log‘𝑤) = -(log‘𝑦))
236235, 225, 226fvmpt3i 6767 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦))
237194, 236syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦))
238237oveq2d 7166 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦)) = ((1 − 𝑡) · -(log‘𝑦)))
239209rpcnd 12427 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℂ)
240195recnd 10663 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈ ℂ)
241239, 240mulneg2d 11088 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · -(log‘𝑦)) = -((1 − 𝑡) · (log‘𝑦)))
242238, 241eqtrd 2856 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦)) = -((1 − 𝑡) · (log‘𝑦)))
243233, 242oveq12d 7168 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦))))
244190recnd 10663 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℂ)
245196recnd 10663 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈ ℂ)
246244, 245negdid 11004 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦))))
247243, 246eqtr4d 2859 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))) = -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))
248215, 222, 2473brtr4d 5090 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))))
249163, 167, 176, 248scvxcvx 25557 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℝ+𝑣 ∈ ℝ+𝑠 ∈ (0[,]1))) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑠 · 𝑢) + ((1 − 𝑠) · 𝑣))) ≤ ((𝑠 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑢)) + ((1 − 𝑠) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑣))))
250163, 167, 176, 1, 180, 2, 183, 249jensen 25560 . . . . . . 7 (𝜑 → (((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊)) ∈ ℝ+ ∧ ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊))) ≤ ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg 𝑊))))
251250simprd 498 . . . . . 6 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊))) ≤ ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg 𝑊)))
252182oveq2d 7166 . . . . . . . 8 (𝜑 → ((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊)) = ((ℂfld Σg (𝑊f · 𝐹)) / 1))
253252fveq2d 6668 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊))) = ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / 1)))
254147rpcnd 12427 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑊f · 𝐹)) ∈ ℂ)
255254div1d 11402 . . . . . . . 8 (𝜑 → ((ℂfld Σg (𝑊f · 𝐹)) / 1) = (ℂfld Σg (𝑊f · 𝐹)))
256255fveq2d 6668 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / 1)) = ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘(ℂfld Σg (𝑊f · 𝐹))))
257 fveq2 6664 . . . . . . . . . . 11 (𝑤 = (ℂfld Σg (𝑊f · 𝐹)) → (log‘𝑤) = (log‘(ℂfld Σg (𝑊f · 𝐹))))
258257negeqd 10874 . . . . . . . . . 10 (𝑤 = (ℂfld Σg (𝑊f · 𝐹)) → -(log‘𝑤) = -(log‘(ℂfld Σg (𝑊f · 𝐹))))
259258, 225, 226fvmpt3i 6767 . . . . . . . . 9 ((ℂfld Σg (𝑊f · 𝐹)) ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘(ℂfld Σg (𝑊f · 𝐹))) = -(log‘(ℂfld Σg (𝑊f · 𝐹))))
260147, 259syl 17 . . . . . . . 8 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘(ℂfld Σg (𝑊f · 𝐹))) = -(log‘(ℂfld Σg (𝑊f · 𝐹))))
261137fveq2d 6668 . . . . . . . . 9 (𝜑 → (log‘(ℂfld Σg (𝑊f · 𝐹))) = (log‘(ℂfld Σg (𝐹f · 𝑊))))
262261negeqd 10874 . . . . . . . 8 (𝜑 → -(log‘(ℂfld Σg (𝑊f · 𝐹))) = -(log‘(ℂfld Σg (𝐹f · 𝑊))))
263260, 262eqtrd 2856 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘(ℂfld Σg (𝑊f · 𝐹))) = -(log‘(ℂfld Σg (𝐹f · 𝑊))))
264253, 256, 2633eqtrd 2860 . . . . . 6 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg (𝑊f · 𝐹)) / (ℂfld Σg 𝑊))) = -(log‘(ℂfld Σg (𝐹f · 𝑊))))
265182oveq2d 7166 . . . . . . 7 (𝜑 → ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg 𝑊)) = ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / 1))
266 ringmnd 19300 . . . . . . . . . . 11 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
26771, 266ax-mp 5 . . . . . . . . . 10 fld ∈ Mnd
26872submid 17969 . . . . . . . . . 10 (ℂfld ∈ Mnd → ℂ ∈ (SubMnd‘ℂfld))
269267, 268mp1i 13 . . . . . . . . 9 (𝜑 → ℂ ∈ (SubMnd‘ℂfld))
270 mulcl 10615 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
271270adantl 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
272 rpcn 12393 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
273272ssriv 3970 . . . . . . . . . . . 12 + ⊆ ℂ
274273a1i 11 . . . . . . . . . . 11 (𝜑 → ℝ+ ⊆ ℂ)
2754, 274fssd 6522 . . . . . . . . . 10 (𝜑𝑊:𝐴⟶ℂ)
276165recnd 10663 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ℝ+) → (log‘𝑤) ∈ ℂ)
277276negcld 10978 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ+) → -(log‘𝑤) ∈ ℂ)
278277fmpttd 6873 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)):ℝ+⟶ℂ)
279 fco 6525 . . . . . . . . . . 11 (((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)):ℝ+⟶ℂ ∧ 𝐹:𝐴⟶ℝ+) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹):𝐴⟶ℂ)
280278, 2, 279syl2anc 586 . . . . . . . . . 10 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹):𝐴⟶ℂ)
281271, 275, 280, 1, 1, 48off 7418 . . . . . . . . 9 (𝜑 → (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)):𝐴⟶ℂ)
282281, 1, 160fdmfifsupp 8837 . . . . . . . . 9 (𝜑 → (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)) finSupp 0)
28373, 151, 1, 269, 281, 282gsumsubmcl 19033 . . . . . . . 8 (𝜑 → (ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) ∈ ℂ)
284283div1d 11402 . . . . . . 7 (𝜑 → ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / 1) = (ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))))
285 eqidd 2822 . . . . . . . . . 10 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)))
286 fveq2 6664 . . . . . . . . . . 11 (𝑤 = (𝐹𝑘) → (log‘𝑤) = (log‘(𝐹𝑘)))
287286negeqd 10874 . . . . . . . . . 10 (𝑤 = (𝐹𝑘) → -(log‘𝑤) = -(log‘(𝐹𝑘)))
2883, 138, 285, 287fmptco 6885 . . . . . . . . 9 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹) = (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))
289288oveq2d 7166 . . . . . . . 8 (𝜑 → (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)) = (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))))
290289oveq2d 7166 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) = (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
291265, 284, 2903eqtrd 2860 . . . . . 6 (𝜑 → ((ℂfld Σg (𝑊f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg 𝑊)) = (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
292251, 264, 2913brtr3d 5089 . . . . 5 (𝜑 → -(log‘(ℂfld Σg (𝐹f · 𝑊))) ≤ (ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
293149, 162, 292lenegcon1d 11216 . . . 4 (𝜑 → -(ℂfld Σg (𝑊f · (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))) ≤ (log‘(ℂfld Σg (𝐹f · 𝑊))))
294130, 293eqbrtrrd 5082 . . 3 (𝜑 → (log‘(𝑀 Σg (𝐹f𝑐𝑊))) ≤ (log‘(ℂfld Σg (𝐹f · 𝑊))))
295127relogcld 25200 . . . 4 (𝜑 → (log‘(𝑀 Σg (𝐹f𝑐𝑊))) ∈ ℝ)
296 efle 15465 . . . 4 (((log‘(𝑀 Σg (𝐹f𝑐𝑊))) ∈ ℝ ∧ (log‘(ℂfld Σg (𝐹f · 𝑊))) ∈ ℝ) → ((log‘(𝑀 Σg (𝐹f𝑐𝑊))) ≤ (log‘(ℂfld Σg (𝐹f · 𝑊))) ↔ (exp‘(log‘(𝑀 Σg (𝐹f𝑐𝑊)))) ≤ (exp‘(log‘(ℂfld Σg (𝐹f · 𝑊))))))
297295, 149, 296syl2anc 586 . . 3 (𝜑 → ((log‘(𝑀 Σg (𝐹f𝑐𝑊))) ≤ (log‘(ℂfld Σg (𝐹f · 𝑊))) ↔ (exp‘(log‘(𝑀 Σg (𝐹f𝑐𝑊)))) ≤ (exp‘(log‘(ℂfld Σg (𝐹f · 𝑊))))))
298294, 297mpbid 234 . 2 (𝜑 → (exp‘(log‘(𝑀 Σg (𝐹f𝑐𝑊)))) ≤ (exp‘(log‘(ℂfld Σg (𝐹f · 𝑊)))))
299127reeflogd 25201 . . 3 (𝜑 → (exp‘(log‘(𝑀 Σg (𝐹f𝑐𝑊)))) = (𝑀 Σg (𝐹f𝑐𝑊)))
300299eqcomd 2827 . 2 (𝜑 → (𝑀 Σg (𝐹f𝑐𝑊)) = (exp‘(log‘(𝑀 Σg (𝐹f𝑐𝑊)))))
301148reeflogd 25201 . . 3 (𝜑 → (exp‘(log‘(ℂfld Σg (𝐹f · 𝑊)))) = (ℂfld Σg (𝐹f · 𝑊)))
302301eqcomd 2827 . 2 (𝜑 → (ℂfld Σg (𝐹f · 𝑊)) = (exp‘(log‘(ℂfld Σg (𝐹f · 𝑊)))))
303298, 300, 3023brtr4d 5090 1 (𝜑 → (𝑀 Σg (𝐹f𝑐𝑊)) ≤ (ℂfld Σg (𝐹f · 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  Vcvv 3494  cdif 3932  wss 3935  c0 4290  {csn 4560   class class class wbr 5058  cmpt 5138  cres 5551  ccom 5553  wf 6345  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  f cof 7401  Fincfn 8503  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  +∞cpnf 10666   < clt 10669  cle 10670  cmin 10864  -cneg 10865   / cdiv 11291  +crp 12383  (,)cioo 12732  [,)cico 12734  [,]cicc 12735  Σcsu 15036  expce 15409  Basecbs 16477  s cress 16478  0gc0g 16707   Σg cgsu 16708  Mndcmnd 17905   MndHom cmhm 17948  SubMndcsubmnd 17949  SubGrpcsubg 18267   GrpHom cghm 18349   GrpIso cgim 18391  CMndccmn 18900  mulGrpcmgp 19233  Ringcrg 19291  CRingccrg 19292  DivRingcdr 19496  SubRingcsubrg 19525  fldccnfld 20539  fldcrefld 20742  logclog 25132  𝑐ccxp 25133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415  df-sin 15417  df-cos 15418  df-pi 15420  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-mulg 18219  df-subg 18270  df-ghm 18350  df-gim 18393  df-cntz 18441  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-drng 19498  df-subrg 19527  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-refld 20743  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-cmp 21989  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-limc 24458  df-dv 24459  df-log 25134  df-cxp 25135
This theorem is referenced by:  amgmlemALT  44898  amgmw2d  44899
  Copyright terms: Public domain W3C validator