MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anclb Structured version   Visualization version   GIF version

Theorem anclb 567
Description: Conjoin antecedent to left of consequent. Theorem *4.7 of [WhiteheadRussell] p. 120. (Contributed by NM, 25-Jul-1999.) (Proof shortened by Wolf Lammen, 24-Mar-2013.)
Assertion
Ref Expression
anclb ((𝜑𝜓) ↔ (𝜑 → (𝜑𝜓)))

Proof of Theorem anclb
StepHypRef Expression
1 ibar 523 . 2 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
21pm5.74i 258 1 ((𝜑𝜓) ↔ (𝜑 → (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 195  df-an 384
This theorem is referenced by:  pm4.71  659  difin  3822  bnj1021  30094  dihglblem6  35443
  Copyright terms: Public domain W3C validator