MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ancr Structured version   Visualization version   GIF version

Theorem ancr 571
Description: Conjoin antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
ancr ((𝜑𝜓) → (𝜑 → (𝜓𝜑)))

Proof of Theorem ancr
StepHypRef Expression
1 pm3.21 464 . 2 (𝜑 → (𝜓 → (𝜓𝜑)))
21a2i 14 1 ((𝜑𝜓) → (𝜑 → (𝜓𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  bimsc1  979  reupick2  3889  intmin4  4471  bnj1098  30562  lukshef-ax2  32056  poimirlem25  33066  pm14.122b  38106
  Copyright terms: Public domain W3C validator