MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  angpieqvdlem Structured version   Visualization version   GIF version

Theorem angpieqvdlem 24455
Description: Equivalence used in the proof of angpieqvd 24458. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
angpieqvdlem.A (𝜑𝐴 ∈ ℂ)
angpieqvdlem.B (𝜑𝐵 ∈ ℂ)
angpieqvdlem.C (𝜑𝐶 ∈ ℂ)
angpieqvdlem.AneB (𝜑𝐴𝐵)
angpieqvdlem.AneC (𝜑𝐴𝐶)
Assertion
Ref Expression
angpieqvdlem (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1)))

Proof of Theorem angpieqvdlem
StepHypRef Expression
1 angpieqvdlem.C . . . . . 6 (𝜑𝐶 ∈ ℂ)
2 angpieqvdlem.B . . . . . 6 (𝜑𝐵 ∈ ℂ)
31, 2subcld 10336 . . . . 5 (𝜑 → (𝐶𝐵) ∈ ℂ)
4 angpieqvdlem.A . . . . . 6 (𝜑𝐴 ∈ ℂ)
54, 2subcld 10336 . . . . 5 (𝜑 → (𝐴𝐵) ∈ ℂ)
6 angpieqvdlem.AneB . . . . . 6 (𝜑𝐴𝐵)
74, 2, 6subne0d 10345 . . . . 5 (𝜑 → (𝐴𝐵) ≠ 0)
83, 5, 7divcld 10745 . . . 4 (𝜑 → ((𝐶𝐵) / (𝐴𝐵)) ∈ ℂ)
98negcld 10323 . . 3 (𝜑 → -((𝐶𝐵) / (𝐴𝐵)) ∈ ℂ)
10 1cnd 10000 . . . 4 (𝜑 → 1 ∈ ℂ)
11 angpieqvdlem.AneC . . . . . . 7 (𝜑𝐴𝐶)
1211necomd 2845 . . . . . 6 (𝜑𝐶𝐴)
131, 4, 2, 12subneintr2d 10382 . . . . 5 (𝜑 → (𝐶𝐵) ≠ (𝐴𝐵))
143, 5, 7, 13divne1d 10756 . . . 4 (𝜑 → ((𝐶𝐵) / (𝐴𝐵)) ≠ 1)
158, 10, 14negned 10333 . . 3 (𝜑 → -((𝐶𝐵) / (𝐴𝐵)) ≠ -1)
169, 15xov1plusxeqvd 12260 . 2 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ (-((𝐶𝐵) / (𝐴𝐵)) / (1 + -((𝐶𝐵) / (𝐴𝐵)))) ∈ (0(,)1)))
173, 5, 7divnegd 10758 . . . . . 6 (𝜑 → -((𝐶𝐵) / (𝐴𝐵)) = (-(𝐶𝐵) / (𝐴𝐵)))
181, 2negsubdi2d 10352 . . . . . . 7 (𝜑 → -(𝐶𝐵) = (𝐵𝐶))
1918oveq1d 6619 . . . . . 6 (𝜑 → (-(𝐶𝐵) / (𝐴𝐵)) = ((𝐵𝐶) / (𝐴𝐵)))
2017, 19eqtrd 2655 . . . . 5 (𝜑 → -((𝐶𝐵) / (𝐴𝐵)) = ((𝐵𝐶) / (𝐴𝐵)))
215, 7dividd 10743 . . . . . . . 8 (𝜑 → ((𝐴𝐵) / (𝐴𝐵)) = 1)
2221oveq1d 6619 . . . . . . 7 (𝜑 → (((𝐴𝐵) / (𝐴𝐵)) − ((𝐶𝐵) / (𝐴𝐵))) = (1 − ((𝐶𝐵) / (𝐴𝐵))))
235, 3, 5, 7divsubdird 10784 . . . . . . 7 (𝜑 → (((𝐴𝐵) − (𝐶𝐵)) / (𝐴𝐵)) = (((𝐴𝐵) / (𝐴𝐵)) − ((𝐶𝐵) / (𝐴𝐵))))
2410, 8negsubd 10342 . . . . . . 7 (𝜑 → (1 + -((𝐶𝐵) / (𝐴𝐵))) = (1 − ((𝐶𝐵) / (𝐴𝐵))))
2522, 23, 243eqtr4rd 2666 . . . . . 6 (𝜑 → (1 + -((𝐶𝐵) / (𝐴𝐵))) = (((𝐴𝐵) − (𝐶𝐵)) / (𝐴𝐵)))
264, 1, 2nnncan2d 10371 . . . . . . 7 (𝜑 → ((𝐴𝐵) − (𝐶𝐵)) = (𝐴𝐶))
2726oveq1d 6619 . . . . . 6 (𝜑 → (((𝐴𝐵) − (𝐶𝐵)) / (𝐴𝐵)) = ((𝐴𝐶) / (𝐴𝐵)))
2825, 27eqtrd 2655 . . . . 5 (𝜑 → (1 + -((𝐶𝐵) / (𝐴𝐵))) = ((𝐴𝐶) / (𝐴𝐵)))
2920, 28oveq12d 6622 . . . 4 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) / (1 + -((𝐶𝐵) / (𝐴𝐵)))) = (((𝐵𝐶) / (𝐴𝐵)) / ((𝐴𝐶) / (𝐴𝐵))))
302, 1subcld 10336 . . . . 5 (𝜑 → (𝐵𝐶) ∈ ℂ)
314, 1subcld 10336 . . . . 5 (𝜑 → (𝐴𝐶) ∈ ℂ)
324, 1, 11subne0d 10345 . . . . 5 (𝜑 → (𝐴𝐶) ≠ 0)
3330, 31, 5, 32, 7divcan7d 10773 . . . 4 (𝜑 → (((𝐵𝐶) / (𝐴𝐵)) / ((𝐴𝐶) / (𝐴𝐵))) = ((𝐵𝐶) / (𝐴𝐶)))
342, 1, 4, 1, 11div2subd 10795 . . . 4 (𝜑 → ((𝐵𝐶) / (𝐴𝐶)) = ((𝐶𝐵) / (𝐶𝐴)))
3529, 33, 343eqtrrd 2660 . . 3 (𝜑 → ((𝐶𝐵) / (𝐶𝐴)) = (-((𝐶𝐵) / (𝐴𝐵)) / (1 + -((𝐶𝐵) / (𝐴𝐵)))))
3635eleq1d 2683 . 2 (𝜑 → (((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1) ↔ (-((𝐶𝐵) / (𝐴𝐵)) / (1 + -((𝐶𝐵) / (𝐴𝐵)))) ∈ (0(,)1)))
3716, 36bitr4d 271 1 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wcel 1987  wne 2790  (class class class)co 6604  cc 9878  0cc0 9880  1c1 9881   + caddc 9883  cmin 10210  -cneg 10211   / cdiv 10628  +crp 11776  (,)cioo 12117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-rp 11777  df-ioo 12121
This theorem is referenced by:  angpieqvd  24458
  Copyright terms: Public domain W3C validator