MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  angpined Structured version   Visualization version   GIF version

Theorem angpined 24274
Description: If the angle at ABC is π, then A is not equal to C. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
angpieqvd.angdef 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
angpieqvd.A (𝜑𝐴 ∈ ℂ)
angpieqvd.B (𝜑𝐵 ∈ ℂ)
angpieqvd.C (𝜑𝐶 ∈ ℂ)
angpieqvd.AneB (𝜑𝐴𝐵)
angpieqvd.BneC (𝜑𝐵𝐶)
Assertion
Ref Expression
angpined (𝜑 → (((𝐴𝐵)𝐹(𝐶𝐵)) = π → 𝐴𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem angpined
StepHypRef Expression
1 angpieqvd.angdef . . 3 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
2 angpieqvd.A . . 3 (𝜑𝐴 ∈ ℂ)
3 angpieqvd.B . . 3 (𝜑𝐵 ∈ ℂ)
4 angpieqvd.C . . 3 (𝜑𝐶 ∈ ℂ)
5 angpieqvd.AneB . . 3 (𝜑𝐴𝐵)
6 angpieqvd.BneC . . 3 (𝜑𝐵𝐶)
71, 2, 3, 4, 5, 6angpieqvdlem2 24273 . 2 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
8 1rp 11668 . . . . . 6 1 ∈ ℝ+
9 1re 9895 . . . . . . 7 1 ∈ ℝ
10 ax-1ne0 9861 . . . . . . 7 1 ≠ 0
11 rpneg 11695 . . . . . . 7 ((1 ∈ ℝ ∧ 1 ≠ 0) → (1 ∈ ℝ+ ↔ ¬ -1 ∈ ℝ+))
129, 10, 11mp2an 703 . . . . . 6 (1 ∈ ℝ+ ↔ ¬ -1 ∈ ℝ+)
138, 12mpbi 218 . . . . 5 ¬ -1 ∈ ℝ+
142, 3subcld 10243 . . . . . . . . . . . 12 (𝜑 → (𝐴𝐵) ∈ ℂ)
1514adantr 479 . . . . . . . . . . 11 ((𝜑𝐶 = 𝐴) → (𝐴𝐵) ∈ ℂ)
162, 3, 5subne0d 10252 . . . . . . . . . . . 12 (𝜑 → (𝐴𝐵) ≠ 0)
1716adantr 479 . . . . . . . . . . 11 ((𝜑𝐶 = 𝐴) → (𝐴𝐵) ≠ 0)
18 simpr 475 . . . . . . . . . . . 12 ((𝜑𝐶 = 𝐴) → 𝐶 = 𝐴)
1918oveq1d 6542 . . . . . . . . . . 11 ((𝜑𝐶 = 𝐴) → (𝐶𝐵) = (𝐴𝐵))
2015, 17, 19diveq1bd 10698 . . . . . . . . . 10 ((𝜑𝐶 = 𝐴) → ((𝐶𝐵) / (𝐴𝐵)) = 1)
2120adantlr 746 . . . . . . . . 9 (((𝜑 ∧ -((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+) ∧ 𝐶 = 𝐴) → ((𝐶𝐵) / (𝐴𝐵)) = 1)
2221negeqd 10126 . . . . . . . 8 (((𝜑 ∧ -((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+) ∧ 𝐶 = 𝐴) → -((𝐶𝐵) / (𝐴𝐵)) = -1)
23 simplr 787 . . . . . . . 8 (((𝜑 ∧ -((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+) ∧ 𝐶 = 𝐴) → -((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+)
2422, 23eqeltrrd 2688 . . . . . . 7 (((𝜑 ∧ -((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+) ∧ 𝐶 = 𝐴) → -1 ∈ ℝ+)
2524ex 448 . . . . . 6 ((𝜑 ∧ -((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+) → (𝐶 = 𝐴 → -1 ∈ ℝ+))
2625necon3bd 2795 . . . . 5 ((𝜑 ∧ -((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+) → (¬ -1 ∈ ℝ+𝐶𝐴))
2713, 26mpi 20 . . . 4 ((𝜑 ∧ -((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+) → 𝐶𝐴)
2827ex 448 . . 3 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+𝐶𝐴))
29 necom 2834 . . 3 (𝐶𝐴𝐴𝐶)
3028, 29syl6ib 239 . 2 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+𝐴𝐶))
317, 30sylbird 248 1 (𝜑 → (((𝐴𝐵)𝐹(𝐶𝐵)) = π → 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wne 2779  cdif 3536  {csn 4124  cfv 5790  (class class class)co 6527  cmpt2 6529  cc 9790  cr 9791  0cc0 9792  1c1 9793  cmin 10117  -cneg 10118   / cdiv 10533  +crp 11664  cim 13632  πcpi 14582  logclog 24022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-ioo 12006  df-ioc 12007  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-fl 12410  df-mod 12486  df-seq 12619  df-exp 12678  df-fac 12878  df-bc 12907  df-hash 12935  df-shft 13601  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-limsup 13996  df-clim 14013  df-rlim 14014  df-sum 14211  df-ef 14583  df-sin 14585  df-cos 14586  df-pi 14588  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-starv 15729  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-hom 15739  df-cco 15740  df-rest 15852  df-topn 15853  df-0g 15871  df-gsum 15872  df-topgen 15873  df-pt 15874  df-prds 15877  df-xrs 15931  df-qtop 15936  df-imas 15937  df-xps 15939  df-mre 16015  df-mrc 16016  df-acs 16018  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-submnd 17105  df-mulg 17310  df-cntz 17519  df-cmn 17964  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-fbas 19510  df-fg 19511  df-cnfld 19514  df-top 20463  df-bases 20464  df-topon 20465  df-topsp 20466  df-cld 20575  df-ntr 20576  df-cls 20577  df-nei 20654  df-lp 20692  df-perf 20693  df-cn 20783  df-cnp 20784  df-haus 20871  df-tx 21117  df-hmeo 21310  df-fil 21402  df-fm 21494  df-flim 21495  df-flf 21496  df-xms 21876  df-ms 21877  df-tms 21878  df-cncf 22420  df-limc 23353  df-dv 23354  df-log 24024
This theorem is referenced by:  angpieqvd  24275
  Copyright terms: Public domain W3C validator