![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > angvald | Structured version Visualization version GIF version |
Description: The (signed) angle between two vectors is the argument of their quotient. Deduction form of angval 24728. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
ang.1 | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
angvald.1 | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
angvald.2 | ⊢ (𝜑 → 𝑋 ≠ 0) |
angvald.3 | ⊢ (𝜑 → 𝑌 ∈ ℂ) |
angvald.4 | ⊢ (𝜑 → 𝑌 ≠ 0) |
Ref | Expression |
---|---|
angvald | ⊢ (𝜑 → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | angvald.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
2 | angvald.2 | . 2 ⊢ (𝜑 → 𝑋 ≠ 0) | |
3 | angvald.3 | . 2 ⊢ (𝜑 → 𝑌 ∈ ℂ) | |
4 | angvald.4 | . 2 ⊢ (𝜑 → 𝑌 ≠ 0) | |
5 | ang.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
6 | 5 | angval 24728 | . 2 ⊢ (((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) ∧ (𝑌 ∈ ℂ ∧ 𝑌 ≠ 0)) → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋)))) |
7 | 1, 2, 3, 4, 6 | syl22anc 1478 | 1 ⊢ (𝜑 → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2137 ≠ wne 2930 ∖ cdif 3710 {csn 4319 ‘cfv 6047 (class class class)co 6811 ↦ cmpt2 6813 ℂcc 10124 0cc0 10126 / cdiv 10874 ℑcim 14035 logclog 24498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pr 5053 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-ral 3053 df-rex 3054 df-rab 3057 df-v 3340 df-sbc 3575 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-sn 4320 df-pr 4322 df-op 4326 df-uni 4587 df-br 4803 df-opab 4863 df-id 5172 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-iota 6010 df-fun 6049 df-fv 6055 df-ov 6814 df-oprab 6815 df-mpt2 6816 |
This theorem is referenced by: angcld 24732 angrteqvd 24733 cosangneg2d 24734 ang180lem4 24739 lawcos 24743 isosctrlem3 24747 angpieqvdlem2 24753 |
Copyright terms: Public domain | W3C validator |