Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem4 Structured version   Visualization version   GIF version

Theorem aomclem4 37107
Description: Lemma for dfac11 37112. Limit case. Patch together well-orderings constructed so far using fnwe2 37103 to cover the limit rank. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem4.f 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
aomclem4.on (𝜑 → dom 𝑧 ∈ On)
aomclem4.su (𝜑 → dom 𝑧 = dom 𝑧)
aomclem4.we (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
Assertion
Ref Expression
aomclem4 (𝜑𝐹 We (𝑅1‘dom 𝑧))
Distinct variable groups:   𝑧,𝑎,𝑏   𝜑,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑧)   𝐹(𝑧,𝑎,𝑏)

Proof of Theorem aomclem4
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 suceq 5749 . . 3 (𝑐 = (rank‘𝑎) → suc 𝑐 = suc (rank‘𝑎))
21fveq2d 6152 . 2 (𝑐 = (rank‘𝑎) → (𝑧‘suc 𝑐) = (𝑧‘suc (rank‘𝑎)))
3 aomclem4.f . 2 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
4 r1fnon 8574 . . . . . . . . . . . . . 14 𝑅1 Fn On
5 fnfun 5946 . . . . . . . . . . . . . 14 (𝑅1 Fn On → Fun 𝑅1)
64, 5ax-mp 5 . . . . . . . . . . . . 13 Fun 𝑅1
7 fndm 5948 . . . . . . . . . . . . . . 15 (𝑅1 Fn On → dom 𝑅1 = On)
84, 7ax-mp 5 . . . . . . . . . . . . . 14 dom 𝑅1 = On
98eqimss2i 3639 . . . . . . . . . . . . 13 On ⊆ dom 𝑅1
106, 9pm3.2i 471 . . . . . . . . . . . 12 (Fun 𝑅1 ∧ On ⊆ dom 𝑅1)
11 aomclem4.on . . . . . . . . . . . 12 (𝜑 → dom 𝑧 ∈ On)
12 funfvima2 6447 . . . . . . . . . . . 12 ((Fun 𝑅1 ∧ On ⊆ dom 𝑅1) → (dom 𝑧 ∈ On → (𝑅1‘dom 𝑧) ∈ (𝑅1 “ On)))
1310, 11, 12mpsyl 68 . . . . . . . . . . 11 (𝜑 → (𝑅1‘dom 𝑧) ∈ (𝑅1 “ On))
14 elssuni 4433 . . . . . . . . . . 11 ((𝑅1‘dom 𝑧) ∈ (𝑅1 “ On) → (𝑅1‘dom 𝑧) ⊆ (𝑅1 “ On))
1513, 14syl 17 . . . . . . . . . 10 (𝜑 → (𝑅1‘dom 𝑧) ⊆ (𝑅1 “ On))
1615sselda 3583 . . . . . . . . 9 ((𝜑𝑏 ∈ (𝑅1‘dom 𝑧)) → 𝑏 (𝑅1 “ On))
17 rankidb 8607 . . . . . . . . 9 (𝑏 (𝑅1 “ On) → 𝑏 ∈ (𝑅1‘suc (rank‘𝑏)))
1816, 17syl 17 . . . . . . . 8 ((𝜑𝑏 ∈ (𝑅1‘dom 𝑧)) → 𝑏 ∈ (𝑅1‘suc (rank‘𝑏)))
19 suceq 5749 . . . . . . . . . 10 ((rank‘𝑏) = (rank‘𝑎) → suc (rank‘𝑏) = suc (rank‘𝑎))
2019fveq2d 6152 . . . . . . . . 9 ((rank‘𝑏) = (rank‘𝑎) → (𝑅1‘suc (rank‘𝑏)) = (𝑅1‘suc (rank‘𝑎)))
2120eleq2d 2684 . . . . . . . 8 ((rank‘𝑏) = (rank‘𝑎) → (𝑏 ∈ (𝑅1‘suc (rank‘𝑏)) ↔ 𝑏 ∈ (𝑅1‘suc (rank‘𝑎))))
2218, 21syl5ibcom 235 . . . . . . 7 ((𝜑𝑏 ∈ (𝑅1‘dom 𝑧)) → ((rank‘𝑏) = (rank‘𝑎) → 𝑏 ∈ (𝑅1‘suc (rank‘𝑎))))
2322expimpd 628 . . . . . 6 (𝜑 → ((𝑏 ∈ (𝑅1‘dom 𝑧) ∧ (rank‘𝑏) = (rank‘𝑎)) → 𝑏 ∈ (𝑅1‘suc (rank‘𝑎))))
2423ss2abdv 3654 . . . . 5 (𝜑 → {𝑏 ∣ (𝑏 ∈ (𝑅1‘dom 𝑧) ∧ (rank‘𝑏) = (rank‘𝑎))} ⊆ {𝑏𝑏 ∈ (𝑅1‘suc (rank‘𝑎))})
25 df-rab 2916 . . . . 5 {𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)} = {𝑏 ∣ (𝑏 ∈ (𝑅1‘dom 𝑧) ∧ (rank‘𝑏) = (rank‘𝑎))}
26 abid1 2741 . . . . 5 (𝑅1‘suc (rank‘𝑎)) = {𝑏𝑏 ∈ (𝑅1‘suc (rank‘𝑎))}
2724, 25, 263sstr4g 3625 . . . 4 (𝜑 → {𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)} ⊆ (𝑅1‘suc (rank‘𝑎)))
2827adantr 481 . . 3 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → {𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)} ⊆ (𝑅1‘suc (rank‘𝑎)))
29 rankr1ai 8605 . . . . . 6 (𝑎 ∈ (𝑅1‘dom 𝑧) → (rank‘𝑎) ∈ dom 𝑧)
3029adantl 482 . . . . 5 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → (rank‘𝑎) ∈ dom 𝑧)
31 eloni 5692 . . . . . . . 8 (dom 𝑧 ∈ On → Ord dom 𝑧)
3211, 31syl 17 . . . . . . 7 (𝜑 → Ord dom 𝑧)
33 aomclem4.su . . . . . . 7 (𝜑 → dom 𝑧 = dom 𝑧)
34 limsuc2 37091 . . . . . . 7 ((Ord dom 𝑧 ∧ dom 𝑧 = dom 𝑧) → ((rank‘𝑎) ∈ dom 𝑧 ↔ suc (rank‘𝑎) ∈ dom 𝑧))
3532, 33, 34syl2anc 692 . . . . . 6 (𝜑 → ((rank‘𝑎) ∈ dom 𝑧 ↔ suc (rank‘𝑎) ∈ dom 𝑧))
3635adantr 481 . . . . 5 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → ((rank‘𝑎) ∈ dom 𝑧 ↔ suc (rank‘𝑎) ∈ dom 𝑧))
3730, 36mpbid 222 . . . 4 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → suc (rank‘𝑎) ∈ dom 𝑧)
38 aomclem4.we . . . . . 6 (𝜑 → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
39 fveq2 6148 . . . . . . . 8 (𝑎 = 𝑏 → (𝑧𝑎) = (𝑧𝑏))
40 fveq2 6148 . . . . . . . 8 (𝑎 = 𝑏 → (𝑅1𝑎) = (𝑅1𝑏))
4139, 40weeq12d 37090 . . . . . . 7 (𝑎 = 𝑏 → ((𝑧𝑎) We (𝑅1𝑎) ↔ (𝑧𝑏) We (𝑅1𝑏)))
4241cbvralv 3159 . . . . . 6 (∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎) ↔ ∀𝑏 ∈ dom 𝑧(𝑧𝑏) We (𝑅1𝑏))
4338, 42sylib 208 . . . . 5 (𝜑 → ∀𝑏 ∈ dom 𝑧(𝑧𝑏) We (𝑅1𝑏))
4443adantr 481 . . . 4 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → ∀𝑏 ∈ dom 𝑧(𝑧𝑏) We (𝑅1𝑏))
45 fveq2 6148 . . . . . 6 (𝑏 = suc (rank‘𝑎) → (𝑧𝑏) = (𝑧‘suc (rank‘𝑎)))
46 fveq2 6148 . . . . . 6 (𝑏 = suc (rank‘𝑎) → (𝑅1𝑏) = (𝑅1‘suc (rank‘𝑎)))
4745, 46weeq12d 37090 . . . . 5 (𝑏 = suc (rank‘𝑎) → ((𝑧𝑏) We (𝑅1𝑏) ↔ (𝑧‘suc (rank‘𝑎)) We (𝑅1‘suc (rank‘𝑎))))
4847rspcva 3293 . . . 4 ((suc (rank‘𝑎) ∈ dom 𝑧 ∧ ∀𝑏 ∈ dom 𝑧(𝑧𝑏) We (𝑅1𝑏)) → (𝑧‘suc (rank‘𝑎)) We (𝑅1‘suc (rank‘𝑎)))
4937, 44, 48syl2anc 692 . . 3 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → (𝑧‘suc (rank‘𝑎)) We (𝑅1‘suc (rank‘𝑎)))
50 wess 5061 . . 3 ({𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)} ⊆ (𝑅1‘suc (rank‘𝑎)) → ((𝑧‘suc (rank‘𝑎)) We (𝑅1‘suc (rank‘𝑎)) → (𝑧‘suc (rank‘𝑎)) We {𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)}))
5128, 49, 50sylc 65 . 2 ((𝜑𝑎 ∈ (𝑅1‘dom 𝑧)) → (𝑧‘suc (rank‘𝑎)) We {𝑏 ∈ (𝑅1‘dom 𝑧) ∣ (rank‘𝑏) = (rank‘𝑎)})
52 rankf 8601 . . . 4 rank: (𝑅1 “ On)⟶On
5352a1i 11 . . 3 (𝜑 → rank: (𝑅1 “ On)⟶On)
5453, 15fssresd 6028 . 2 (𝜑 → (rank ↾ (𝑅1‘dom 𝑧)):(𝑅1‘dom 𝑧)⟶On)
55 epweon 6930 . . 3 E We On
5655a1i 11 . 2 (𝜑 → E We On)
572, 3, 51, 54, 56fnwe2 37103 1 (𝜑𝐹 We (𝑅1‘dom 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  {cab 2607  wral 2907  {crab 2911  wss 3555   cuni 4402   class class class wbr 4613  {copab 4672   E cep 4983   We wwe 5032  dom cdm 5074  cima 5077  Ord word 5681  Oncon0 5682  suc csuc 5684  Fun wfun 5841   Fn wfn 5842  wf 5843  cfv 5847  𝑅1cr1 8569  rankcrnk 8570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-r1 8571  df-rank 8572
This theorem is referenced by:  aomclem5  37108
  Copyright terms: Public domain W3C validator