![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aovnuoveq | Structured version Visualization version GIF version |
Description: The alternative value of the operation on an ordered pair equals the operation's value at this ordered pair. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aovnuoveq | ⊢ ( ((𝐴𝐹𝐵)) ≠ V → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-aov 41722 | . . 3 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
2 | 1 | neeq1i 2996 | . 2 ⊢ ( ((𝐴𝐹𝐵)) ≠ V ↔ (𝐹'''〈𝐴, 𝐵〉) ≠ V) |
3 | afvnufveq 41751 | . . 3 ⊢ ((𝐹'''〈𝐴, 𝐵〉) ≠ V → (𝐹'''〈𝐴, 𝐵〉) = (𝐹‘〈𝐴, 𝐵〉)) | |
4 | df-ov 6817 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
5 | 3, 1, 4 | 3eqtr4g 2819 | . 2 ⊢ ((𝐹'''〈𝐴, 𝐵〉) ≠ V → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) |
6 | 2, 5 | sylbi 207 | 1 ⊢ ( ((𝐴𝐹𝐵)) ≠ V → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ≠ wne 2932 Vcvv 3340 〈cop 4327 ‘cfv 6049 (class class class)co 6814 '''cafv 41718 ((caov 41719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-rab 3059 df-v 3342 df-un 3720 df-if 4231 df-fv 6057 df-ov 6817 df-afv 41721 df-aov 41722 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |