Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem1 Structured version   Visualization version   GIF version

Theorem archiabllem1 30826
Description: Archimedean ordered groups with a minimal positive value are abelian. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem1.u (𝜑𝑈𝐵)
archiabllem1.p (𝜑0 < 𝑈)
archiabllem1.s ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
Assertion
Ref Expression
archiabllem1 (𝜑𝑊 ∈ Abel)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑈   𝑥,𝑊   𝜑,𝑥   𝑥, ·   𝑥, 0   𝑥, <   𝑥,

Proof of Theorem archiabllem1
Dummy variables 𝑚 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 archiabllem.g . . 3 (𝜑𝑊 ∈ oGrp)
2 ogrpgrp 30708 . . 3 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
31, 2syl 17 . 2 (𝜑𝑊 ∈ Grp)
4 simplr 767 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℤ)
54zcnd 12091 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℂ)
6 simpr 487 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
76zcnd 12091 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℂ)
85, 7addcomd 10845 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝑚 + 𝑛) = (𝑛 + 𝑚))
98oveq1d 7174 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑚 + 𝑛) · 𝑈) = ((𝑛 + 𝑚) · 𝑈))
103ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑊 ∈ Grp)
11 archiabllem1.u . . . . . . . . . . . 12 (𝜑𝑈𝐵)
1211ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑈𝐵)
13 archiabllem.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑊)
14 archiabllem.m . . . . . . . . . . . 12 · = (.g𝑊)
15 eqid 2824 . . . . . . . . . . . 12 (+g𝑊) = (+g𝑊)
1613, 14, 15mulgdir 18262 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑈𝐵)) → ((𝑚 + 𝑛) · 𝑈) = ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)))
1710, 4, 6, 12, 16syl13anc 1368 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑚 + 𝑛) · 𝑈) = ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)))
1813, 14, 15mulgdir 18262 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ (𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑈𝐵)) → ((𝑛 + 𝑚) · 𝑈) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
1910, 6, 4, 12, 18syl13anc 1368 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑛 + 𝑚) · 𝑈) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
209, 17, 193eqtr3d 2867 . . . . . . . . 9 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
2120adantllr 717 . . . . . . . 8 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
2221adantlr 713 . . . . . . 7 (((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) → ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
2322adantr 483 . . . . . 6 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
24 simpllr 774 . . . . . . 7 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → 𝑦 = (𝑚 · 𝑈))
25 simpr 487 . . . . . . 7 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → 𝑧 = (𝑛 · 𝑈))
2624, 25oveq12d 7177 . . . . . 6 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → (𝑦(+g𝑊)𝑧) = ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)))
2725, 24oveq12d 7177 . . . . . 6 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → (𝑧(+g𝑊)𝑦) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
2823, 26, 273eqtr4d 2869 . . . . 5 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦))
29 simplll 773 . . . . . 6 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) → 𝜑)
30 simpr1r 1227 . . . . . . 7 ((𝜑 ∧ ((𝑦𝐵𝑧𝐵) ∧ 𝑚 ∈ ℤ ∧ 𝑦 = (𝑚 · 𝑈))) → 𝑧𝐵)
31303anassrs 1356 . . . . . 6 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) → 𝑧𝐵)
32 archiabllem.0 . . . . . . 7 0 = (0g𝑊)
33 archiabllem.e . . . . . . 7 = (le‘𝑊)
34 archiabllem.t . . . . . . 7 < = (lt‘𝑊)
35 archiabllem.a . . . . . . 7 (𝜑𝑊 ∈ Archi)
36 archiabllem1.p . . . . . . 7 (𝜑0 < 𝑈)
37 archiabllem1.s . . . . . . 7 ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
3813, 32, 33, 34, 14, 1, 35, 11, 36, 37archiabllem1b 30825 . . . . . 6 ((𝜑𝑧𝐵) → ∃𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑈))
3929, 31, 38syl2anc 586 . . . . 5 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) → ∃𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑈))
4028, 39r19.29a 3292 . . . 4 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) → (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦))
4113, 32, 33, 34, 14, 1, 35, 11, 36, 37archiabllem1b 30825 . . . . 5 ((𝜑𝑦𝐵) → ∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑈))
4241adantrr 715 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑈))
4340, 42r19.29a 3292 . . 3 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦))
4443ralrimivva 3194 . 2 (𝜑 → ∀𝑦𝐵𝑧𝐵 (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦))
4513, 15isabl2 18918 . 2 (𝑊 ∈ Abel ↔ (𝑊 ∈ Grp ∧ ∀𝑦𝐵𝑧𝐵 (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦)))
463, 44, 45sylanbrc 585 1 (𝜑𝑊 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142   class class class wbr 5069  cfv 6358  (class class class)co 7159   + caddc 10543  cz 11984  Basecbs 16486  +gcplusg 16568  lecple 16575  0gc0g 16716  ltcplt 17554  Grpcgrp 18106  .gcmg 18227  Abelcabl 18910  oGrpcogrp 30703  Archicarchi 30810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-seq 13373  df-0g 16718  df-proset 17541  df-poset 17559  df-plt 17571  df-toset 17647  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-grp 18109  df-minusg 18110  df-sbg 18111  df-mulg 18228  df-cmn 18911  df-abl 18912  df-omnd 30704  df-ogrp 30705  df-inftm 30811  df-archi 30812
This theorem is referenced by:  archiabl  30831
  Copyright terms: Public domain W3C validator