Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem2a Structured version   Visualization version   GIF version

Theorem archiabllem2a 29533
Description: Lemma for archiabl 29537, which requires the group to be both left- and right-ordered. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem2.1 + = (+g𝑊)
archiabllem2.2 (𝜑 → (oppg𝑊) ∈ oGrp)
archiabllem2.3 ((𝜑𝑎𝐵0 < 𝑎) → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎))
archiabllem2a.4 (𝜑𝑋𝐵)
archiabllem2a.5 (𝜑0 < 𝑋)
Assertion
Ref Expression
archiabllem2a (𝜑 → ∃𝑐𝐵 ( 0 < 𝑐 ∧ (𝑐 + 𝑐) 𝑋))
Distinct variable groups:   𝑎,𝑏,𝑐,𝐵   𝑊,𝑎,𝑏,𝑐   𝑋,𝑎,𝑏,𝑐   𝜑,𝑎,𝑏   + ,𝑎,𝑏,𝑐   ,𝑎,𝑏,𝑐   < ,𝑎,𝑏,𝑐   0 ,𝑎,𝑏,𝑐
Allowed substitution hints:   𝜑(𝑐)   · (𝑎,𝑏,𝑐)

Proof of Theorem archiabllem2a
StepHypRef Expression
1 simpllr 798 . . . 4 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ (𝑏 + 𝑏) 𝑋) → 𝑏𝐵)
2 simplrl 799 . . . 4 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ (𝑏 + 𝑏) 𝑋) → 0 < 𝑏)
3 simpr 477 . . . 4 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ (𝑏 + 𝑏) 𝑋) → (𝑏 + 𝑏) 𝑋)
4 breq2 4617 . . . . . 6 (𝑐 = 𝑏 → ( 0 < 𝑐0 < 𝑏))
5 id 22 . . . . . . . 8 (𝑐 = 𝑏𝑐 = 𝑏)
65, 5oveq12d 6622 . . . . . . 7 (𝑐 = 𝑏 → (𝑐 + 𝑐) = (𝑏 + 𝑏))
76breq1d 4623 . . . . . 6 (𝑐 = 𝑏 → ((𝑐 + 𝑐) 𝑋 ↔ (𝑏 + 𝑏) 𝑋))
84, 7anbi12d 746 . . . . 5 (𝑐 = 𝑏 → (( 0 < 𝑐 ∧ (𝑐 + 𝑐) 𝑋) ↔ ( 0 < 𝑏 ∧ (𝑏 + 𝑏) 𝑋)))
98rspcev 3295 . . . 4 ((𝑏𝐵 ∧ ( 0 < 𝑏 ∧ (𝑏 + 𝑏) 𝑋)) → ∃𝑐𝐵 ( 0 < 𝑐 ∧ (𝑐 + 𝑐) 𝑋))
101, 2, 3, 9syl12anc 1321 . . 3 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ (𝑏 + 𝑏) 𝑋) → ∃𝑐𝐵 ( 0 < 𝑐 ∧ (𝑐 + 𝑐) 𝑋))
11 simplll 797 . . . . . 6 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → 𝜑)
12 archiabllem.g . . . . . 6 (𝜑𝑊 ∈ oGrp)
13 ogrpgrp 29488 . . . . . 6 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
1411, 12, 133syl 18 . . . . 5 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → 𝑊 ∈ Grp)
15 archiabllem2a.4 . . . . . 6 (𝜑𝑋𝐵)
1611, 15syl 17 . . . . 5 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → 𝑋𝐵)
17 simpllr 798 . . . . 5 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → 𝑏𝐵)
18 archiabllem.b . . . . . 6 𝐵 = (Base‘𝑊)
19 eqid 2621 . . . . . 6 (-g𝑊) = (-g𝑊)
2018, 19grpsubcl 17416 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑋𝐵𝑏𝐵) → (𝑋(-g𝑊)𝑏) ∈ 𝐵)
2114, 16, 17, 20syl3anc 1323 . . . 4 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → (𝑋(-g𝑊)𝑏) ∈ 𝐵)
22 archiabllem.0 . . . . . . 7 0 = (0g𝑊)
2318, 22, 19grpsubid 17420 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑏𝐵) → (𝑏(-g𝑊)𝑏) = 0 )
2414, 17, 23syl2anc 692 . . . . 5 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → (𝑏(-g𝑊)𝑏) = 0 )
2511, 12syl 17 . . . . . 6 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → 𝑊 ∈ oGrp)
26 simplrr 800 . . . . . 6 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → 𝑏 < 𝑋)
27 archiabllem.t . . . . . . 7 < = (lt‘𝑊)
2818, 27, 19ogrpsublt 29507 . . . . . 6 ((𝑊 ∈ oGrp ∧ (𝑏𝐵𝑋𝐵𝑏𝐵) ∧ 𝑏 < 𝑋) → (𝑏(-g𝑊)𝑏) < (𝑋(-g𝑊)𝑏))
2925, 17, 16, 17, 26, 28syl131anc 1336 . . . . 5 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → (𝑏(-g𝑊)𝑏) < (𝑋(-g𝑊)𝑏))
3024, 29eqbrtrrd 4637 . . . 4 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → 0 < (𝑋(-g𝑊)𝑏))
31 archiabllem2.1 . . . . . . 7 + = (+g𝑊)
32 archiabllem2.2 . . . . . . . 8 (𝜑 → (oppg𝑊) ∈ oGrp)
3311, 32syl 17 . . . . . . 7 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → (oppg𝑊) ∈ oGrp)
3418, 31grpcl 17351 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝑏𝐵𝑏𝐵) → (𝑏 + 𝑏) ∈ 𝐵)
3514, 17, 17, 34syl3anc 1323 . . . . . . . . 9 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → (𝑏 + 𝑏) ∈ 𝐵)
36 simpr 477 . . . . . . . . 9 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → 𝑋 < (𝑏 + 𝑏))
3718, 27, 19ogrpsublt 29507 . . . . . . . . 9 ((𝑊 ∈ oGrp ∧ (𝑋𝐵 ∧ (𝑏 + 𝑏) ∈ 𝐵𝑏𝐵) ∧ 𝑋 < (𝑏 + 𝑏)) → (𝑋(-g𝑊)𝑏) < ((𝑏 + 𝑏)(-g𝑊)𝑏))
3825, 16, 35, 17, 36, 37syl131anc 1336 . . . . . . . 8 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → (𝑋(-g𝑊)𝑏) < ((𝑏 + 𝑏)(-g𝑊)𝑏))
3918, 31, 19grpaddsubass 17426 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ (𝑏𝐵𝑏𝐵𝑏𝐵)) → ((𝑏 + 𝑏)(-g𝑊)𝑏) = (𝑏 + (𝑏(-g𝑊)𝑏)))
4014, 17, 17, 17, 39syl13anc 1325 . . . . . . . . 9 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → ((𝑏 + 𝑏)(-g𝑊)𝑏) = (𝑏 + (𝑏(-g𝑊)𝑏)))
4124oveq2d 6620 . . . . . . . . 9 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → (𝑏 + (𝑏(-g𝑊)𝑏)) = (𝑏 + 0 ))
4218, 31, 22grprid 17374 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝑏𝐵) → (𝑏 + 0 ) = 𝑏)
4314, 17, 42syl2anc 692 . . . . . . . . 9 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → (𝑏 + 0 ) = 𝑏)
4440, 41, 433eqtrd 2659 . . . . . . . 8 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → ((𝑏 + 𝑏)(-g𝑊)𝑏) = 𝑏)
4538, 44breqtrd 4639 . . . . . . 7 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → (𝑋(-g𝑊)𝑏) < 𝑏)
4618, 27, 31, 14, 33, 21, 17, 21, 45ogrpaddltrd 29505 . . . . . 6 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) < ((𝑋(-g𝑊)𝑏) + 𝑏))
4718, 31, 19grpnpcan 17428 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑋𝐵𝑏𝐵) → ((𝑋(-g𝑊)𝑏) + 𝑏) = 𝑋)
4814, 16, 17, 47syl3anc 1323 . . . . . 6 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → ((𝑋(-g𝑊)𝑏) + 𝑏) = 𝑋)
4946, 48breqtrd 4639 . . . . 5 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) < 𝑋)
50 ovex 6632 . . . . . . 7 ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) ∈ V
5150a1i 11 . . . . . 6 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) ∈ V)
52 archiabllem.e . . . . . . 7 = (le‘𝑊)
5352, 27pltle 16882 . . . . . 6 ((𝑊 ∈ Grp ∧ ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) ∈ V ∧ 𝑋𝐵) → (((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) < 𝑋 → ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) 𝑋))
5414, 51, 16, 53syl3anc 1323 . . . . 5 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → (((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) < 𝑋 → ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) 𝑋))
5549, 54mpd 15 . . . 4 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) 𝑋)
56 breq2 4617 . . . . . 6 (𝑐 = (𝑋(-g𝑊)𝑏) → ( 0 < 𝑐0 < (𝑋(-g𝑊)𝑏)))
57 id 22 . . . . . . . 8 (𝑐 = (𝑋(-g𝑊)𝑏) → 𝑐 = (𝑋(-g𝑊)𝑏))
5857, 57oveq12d 6622 . . . . . . 7 (𝑐 = (𝑋(-g𝑊)𝑏) → (𝑐 + 𝑐) = ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)))
5958breq1d 4623 . . . . . 6 (𝑐 = (𝑋(-g𝑊)𝑏) → ((𝑐 + 𝑐) 𝑋 ↔ ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) 𝑋))
6056, 59anbi12d 746 . . . . 5 (𝑐 = (𝑋(-g𝑊)𝑏) → (( 0 < 𝑐 ∧ (𝑐 + 𝑐) 𝑋) ↔ ( 0 < (𝑋(-g𝑊)𝑏) ∧ ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) 𝑋)))
6160rspcev 3295 . . . 4 (((𝑋(-g𝑊)𝑏) ∈ 𝐵 ∧ ( 0 < (𝑋(-g𝑊)𝑏) ∧ ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) 𝑋)) → ∃𝑐𝐵 ( 0 < 𝑐 ∧ (𝑐 + 𝑐) 𝑋))
6221, 30, 55, 61syl12anc 1321 . . 3 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → ∃𝑐𝐵 ( 0 < 𝑐 ∧ (𝑐 + 𝑐) 𝑋))
6312ad2antrr 761 . . . . 5 (((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) → 𝑊 ∈ oGrp)
64 isogrp 29487 . . . . . 6 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
6564simprbi 480 . . . . 5 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
66 omndtos 29490 . . . . 5 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
6763, 65, 663syl 18 . . . 4 (((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) → 𝑊 ∈ Toset)
6863, 13syl 17 . . . . 5 (((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) → 𝑊 ∈ Grp)
69 simplr 791 . . . . 5 (((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) → 𝑏𝐵)
7068, 69, 69, 34syl3anc 1323 . . . 4 (((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) → (𝑏 + 𝑏) ∈ 𝐵)
7115ad2antrr 761 . . . 4 (((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) → 𝑋𝐵)
7218, 52, 27tlt2 29449 . . . 4 ((𝑊 ∈ Toset ∧ (𝑏 + 𝑏) ∈ 𝐵𝑋𝐵) → ((𝑏 + 𝑏) 𝑋𝑋 < (𝑏 + 𝑏)))
7367, 70, 71, 72syl3anc 1323 . . 3 (((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) → ((𝑏 + 𝑏) 𝑋𝑋 < (𝑏 + 𝑏)))
7410, 62, 73mpjaodan 826 . 2 (((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) → ∃𝑐𝐵 ( 0 < 𝑐 ∧ (𝑐 + 𝑐) 𝑋))
75 archiabllem2.3 . . . . 5 ((𝜑𝑎𝐵0 < 𝑎) → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎))
76753expia 1264 . . . 4 ((𝜑𝑎𝐵) → ( 0 < 𝑎 → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎)))
7776ralrimiva 2960 . . 3 (𝜑 → ∀𝑎𝐵 ( 0 < 𝑎 → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎)))
78 archiabllem2a.5 . . 3 (𝜑0 < 𝑋)
79 breq2 4617 . . . . 5 (𝑎 = 𝑋 → ( 0 < 𝑎0 < 𝑋))
80 breq2 4617 . . . . . . 7 (𝑎 = 𝑋 → (𝑏 < 𝑎𝑏 < 𝑋))
8180anbi2d 739 . . . . . 6 (𝑎 = 𝑋 → (( 0 < 𝑏𝑏 < 𝑎) ↔ ( 0 < 𝑏𝑏 < 𝑋)))
8281rexbidv 3045 . . . . 5 (𝑎 = 𝑋 → (∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎) ↔ ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑋)))
8379, 82imbi12d 334 . . . 4 (𝑎 = 𝑋 → (( 0 < 𝑎 → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎)) ↔ ( 0 < 𝑋 → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑋))))
8483rspcv 3291 . . 3 (𝑋𝐵 → (∀𝑎𝐵 ( 0 < 𝑎 → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎)) → ( 0 < 𝑋 → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑋))))
8515, 77, 78, 84syl3c 66 . 2 (𝜑 → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑋))
8674, 85r19.29a 3071 1 (𝜑 → ∃𝑐𝐵 ( 0 < 𝑐 ∧ (𝑐 + 𝑐) 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wrex 2908  Vcvv 3186   class class class wbr 4613  cfv 5847  (class class class)co 6604  Basecbs 15781  +gcplusg 15862  lecple 15869  0gc0g 16021  ltcplt 16862  Tosetctos 16954  Grpcgrp 17343  -gcsg 17345  .gcmg 17461  oppgcoppg 17696  oMndcomnd 29482  oGrpcogrp 29483  Archicarchi 29516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-dec 11438  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-plusg 15875  df-ple 15882  df-0g 16023  df-preset 16849  df-poset 16867  df-plt 16879  df-toset 16955  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-oppg 17697  df-omnd 29484  df-ogrp 29485
This theorem is referenced by:  archiabllem2c  29534
  Copyright terms: Public domain W3C validator