Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archirng Structured version   Visualization version   GIF version

Theorem archirng 29569
Description: Property of Archimedean ordered groups, framing positive 𝑌 between multiples of 𝑋. (Contributed by Thierry Arnoux, 12-Apr-2018.)
Hypotheses
Ref Expression
archirng.b 𝐵 = (Base‘𝑊)
archirng.0 0 = (0g𝑊)
archirng.i < = (lt‘𝑊)
archirng.l = (le‘𝑊)
archirng.x · = (.g𝑊)
archirng.1 (𝜑𝑊 ∈ oGrp)
archirng.2 (𝜑𝑊 ∈ Archi)
archirng.3 (𝜑𝑋𝐵)
archirng.4 (𝜑𝑌𝐵)
archirng.5 (𝜑0 < 𝑋)
archirng.6 (𝜑0 < 𝑌)
Assertion
Ref Expression
archirng (𝜑 → ∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
Distinct variable groups:   𝑛,𝑋   𝑛,𝑌   𝜑,𝑛   0 ,𝑛   ,𝑛   < ,𝑛   · ,𝑛
Allowed substitution hints:   𝐵(𝑛)   𝑊(𝑛)

Proof of Theorem archirng
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6622 . . . 4 (𝑚 = 0 → (𝑚 · 𝑋) = (0 · 𝑋))
21breq2d 4635 . . 3 (𝑚 = 0 → (𝑌 (𝑚 · 𝑋) ↔ 𝑌 (0 · 𝑋)))
3 oveq1 6622 . . . 4 (𝑚 = 𝑛 → (𝑚 · 𝑋) = (𝑛 · 𝑋))
43breq2d 4635 . . 3 (𝑚 = 𝑛 → (𝑌 (𝑚 · 𝑋) ↔ 𝑌 (𝑛 · 𝑋)))
5 oveq1 6622 . . . 4 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑋) = ((𝑛 + 1) · 𝑋))
65breq2d 4635 . . 3 (𝑚 = (𝑛 + 1) → (𝑌 (𝑚 · 𝑋) ↔ 𝑌 ((𝑛 + 1) · 𝑋)))
7 archirng.6 . . . . 5 (𝜑0 < 𝑌)
8 archirng.1 . . . . . . 7 (𝜑𝑊 ∈ oGrp)
9 isogrp 29529 . . . . . . . 8 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
109simprbi 480 . . . . . . 7 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
11 omndtos 29532 . . . . . . 7 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
128, 10, 113syl 18 . . . . . 6 (𝜑𝑊 ∈ Toset)
13 ogrpgrp 29530 . . . . . . . 8 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
148, 13syl 17 . . . . . . 7 (𝜑𝑊 ∈ Grp)
15 archirng.b . . . . . . . 8 𝐵 = (Base‘𝑊)
16 archirng.0 . . . . . . . 8 0 = (0g𝑊)
1715, 16grpidcl 17390 . . . . . . 7 (𝑊 ∈ Grp → 0𝐵)
1814, 17syl 17 . . . . . 6 (𝜑0𝐵)
19 archirng.4 . . . . . 6 (𝜑𝑌𝐵)
20 archirng.l . . . . . . 7 = (le‘𝑊)
21 archirng.i . . . . . . 7 < = (lt‘𝑊)
2215, 20, 21tltnle 29489 . . . . . 6 ((𝑊 ∈ Toset ∧ 0𝐵𝑌𝐵) → ( 0 < 𝑌 ↔ ¬ 𝑌 0 ))
2312, 18, 19, 22syl3anc 1323 . . . . 5 (𝜑 → ( 0 < 𝑌 ↔ ¬ 𝑌 0 ))
247, 23mpbid 222 . . . 4 (𝜑 → ¬ 𝑌 0 )
25 archirng.3 . . . . . 6 (𝜑𝑋𝐵)
26 archirng.x . . . . . . 7 · = (.g𝑊)
2715, 16, 26mulg0 17486 . . . . . 6 (𝑋𝐵 → (0 · 𝑋) = 0 )
2825, 27syl 17 . . . . 5 (𝜑 → (0 · 𝑋) = 0 )
2928breq2d 4635 . . . 4 (𝜑 → (𝑌 (0 · 𝑋) ↔ 𝑌 0 ))
3024, 29mtbird 315 . . 3 (𝜑 → ¬ 𝑌 (0 · 𝑋))
3125, 19jca 554 . . . 4 (𝜑 → (𝑋𝐵𝑌𝐵))
32 omndmnd 29531 . . . . . 6 (𝑊 ∈ oMnd → 𝑊 ∈ Mnd)
338, 10, 323syl 18 . . . . 5 (𝜑𝑊 ∈ Mnd)
34 archirng.2 . . . . 5 (𝜑𝑊 ∈ Archi)
3515, 16, 26, 20, 21isarchi2 29566 . . . . . 6 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥))))
3635biimpa 501 . . . . 5 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑊 ∈ Archi) → ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥)))
3712, 33, 34, 36syl21anc 1322 . . . 4 (𝜑 → ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥)))
38 archirng.5 . . . 4 (𝜑0 < 𝑋)
39 breq2 4627 . . . . . 6 (𝑥 = 𝑋 → ( 0 < 𝑥0 < 𝑋))
40 oveq2 6623 . . . . . . . 8 (𝑥 = 𝑋 → (𝑚 · 𝑥) = (𝑚 · 𝑋))
4140breq2d 4635 . . . . . . 7 (𝑥 = 𝑋 → (𝑦 (𝑚 · 𝑥) ↔ 𝑦 (𝑚 · 𝑋)))
4241rexbidv 3047 . . . . . 6 (𝑥 = 𝑋 → (∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥) ↔ ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑋)))
4339, 42imbi12d 334 . . . . 5 (𝑥 = 𝑋 → (( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥)) ↔ ( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑋))))
44 breq1 4626 . . . . . . 7 (𝑦 = 𝑌 → (𝑦 (𝑚 · 𝑋) ↔ 𝑌 (𝑚 · 𝑋)))
4544rexbidv 3047 . . . . . 6 (𝑦 = 𝑌 → (∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑋) ↔ ∃𝑚 ∈ ℕ 𝑌 (𝑚 · 𝑋)))
4645imbi2d 330 . . . . 5 (𝑦 = 𝑌 → (( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑋)) ↔ ( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑌 (𝑚 · 𝑋))))
4743, 46rspc2v 3311 . . . 4 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥)) → ( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑌 (𝑚 · 𝑋))))
4831, 37, 38, 47syl3c 66 . . 3 (𝜑 → ∃𝑚 ∈ ℕ 𝑌 (𝑚 · 𝑋))
492, 4, 6, 30, 48nn0min 29450 . 2 (𝜑 → ∃𝑛 ∈ ℕ0𝑌 (𝑛 · 𝑋) ∧ 𝑌 ((𝑛 + 1) · 𝑋)))
5012adantr 481 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → 𝑊 ∈ Toset)
5114adantr 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → 𝑊 ∈ Grp)
52 simpr 477 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
5352nn0zd 11440 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
5425adantr 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → 𝑋𝐵)
5515, 26mulgcl 17499 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑋𝐵) → (𝑛 · 𝑋) ∈ 𝐵)
5651, 53, 54, 55syl3anc 1323 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → (𝑛 · 𝑋) ∈ 𝐵)
5719adantr 481 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → 𝑌𝐵)
5815, 20, 21tltnle 29489 . . . . 5 ((𝑊 ∈ Toset ∧ (𝑛 · 𝑋) ∈ 𝐵𝑌𝐵) → ((𝑛 · 𝑋) < 𝑌 ↔ ¬ 𝑌 (𝑛 · 𝑋)))
5950, 56, 57, 58syl3anc 1323 . . . 4 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 · 𝑋) < 𝑌 ↔ ¬ 𝑌 (𝑛 · 𝑋)))
6059anbi1d 740 . . 3 ((𝜑𝑛 ∈ ℕ0) → (((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) ↔ (¬ 𝑌 (𝑛 · 𝑋) ∧ 𝑌 ((𝑛 + 1) · 𝑋))))
6160rexbidva 3044 . 2 (𝜑 → (∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) ↔ ∃𝑛 ∈ ℕ0𝑌 (𝑛 · 𝑋) ∧ 𝑌 ((𝑛 + 1) · 𝑋))))
6249, 61mpbird 247 1 (𝜑 → ∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2908  wrex 2909   class class class wbr 4623  cfv 5857  (class class class)co 6615  0cc0 9896  1c1 9897   + caddc 9899  cn 10980  0cn0 11252  cz 11337  Basecbs 15800  lecple 15888  0gc0g 16040  ltcplt 16881  Tosetctos 16973  Mndcmnd 17234  Grpcgrp 17362  .gcmg 17480  oMndcomnd 29524  oGrpcogrp 29525  Archicarchi 29558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-seq 12758  df-0g 16042  df-preset 16868  df-poset 16886  df-plt 16898  df-toset 16974  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-grp 17365  df-minusg 17366  df-mulg 17481  df-omnd 29526  df-ogrp 29527  df-inftm 29559  df-archi 29560
This theorem is referenced by:  archirngz  29570  archiabllem1a  29572
  Copyright terms: Public domain W3C validator