Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archirngz Structured version   Visualization version   GIF version

Theorem archirngz 29525
Description: Property of Archimedean left and right ordered groups. (Contributed by Thierry Arnoux, 6-May-2018.)
Hypotheses
Ref Expression
archirng.b 𝐵 = (Base‘𝑊)
archirng.0 0 = (0g𝑊)
archirng.i < = (lt‘𝑊)
archirng.l = (le‘𝑊)
archirng.x · = (.g𝑊)
archirng.1 (𝜑𝑊 ∈ oGrp)
archirng.2 (𝜑𝑊 ∈ Archi)
archirng.3 (𝜑𝑋𝐵)
archirng.4 (𝜑𝑌𝐵)
archirng.5 (𝜑0 < 𝑋)
archirngz.1 (𝜑 → (oppg𝑊) ∈ oGrp)
Assertion
Ref Expression
archirngz (𝜑 → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
Distinct variable groups:   𝑛,𝑋   𝑛,𝑌   𝜑,𝑛   0 ,𝑛   ,𝑛   < ,𝑛   · ,𝑛
Allowed substitution hints:   𝐵(𝑛)   𝑊(𝑛)

Proof of Theorem archirngz
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 neg1z 11357 . . 3 -1 ∈ ℤ
2 archirng.1 . . . . . . . . . 10 (𝜑𝑊 ∈ oGrp)
3 ogrpgrp 29485 . . . . . . . . . 10 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
42, 3syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ Grp)
5 1zzd 11352 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
6 archirng.3 . . . . . . . . 9 (𝜑𝑋𝐵)
7 archirng.b . . . . . . . . . 10 𝐵 = (Base‘𝑊)
8 archirng.x . . . . . . . . . 10 · = (.g𝑊)
9 eqid 2621 . . . . . . . . . 10 (invg𝑊) = (invg𝑊)
107, 8, 9mulgneg 17481 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 1 ∈ ℤ ∧ 𝑋𝐵) → (-1 · 𝑋) = ((invg𝑊)‘(1 · 𝑋)))
114, 5, 6, 10syl3anc 1323 . . . . . . . 8 (𝜑 → (-1 · 𝑋) = ((invg𝑊)‘(1 · 𝑋)))
127, 8mulg1 17469 . . . . . . . . . 10 (𝑋𝐵 → (1 · 𝑋) = 𝑋)
136, 12syl 17 . . . . . . . . 9 (𝜑 → (1 · 𝑋) = 𝑋)
1413fveq2d 6152 . . . . . . . 8 (𝜑 → ((invg𝑊)‘(1 · 𝑋)) = ((invg𝑊)‘𝑋))
1511, 14eqtrd 2655 . . . . . . 7 (𝜑 → (-1 · 𝑋) = ((invg𝑊)‘𝑋))
16 archirng.5 . . . . . . . 8 (𝜑0 < 𝑋)
17 archirng.i . . . . . . . . . 10 < = (lt‘𝑊)
18 archirng.0 . . . . . . . . . 10 0 = (0g𝑊)
197, 17, 9, 18ogrpinv0lt 29505 . . . . . . . . 9 ((𝑊 ∈ oGrp ∧ 𝑋𝐵) → ( 0 < 𝑋 ↔ ((invg𝑊)‘𝑋) < 0 ))
2019biimpa 501 . . . . . . . 8 (((𝑊 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → ((invg𝑊)‘𝑋) < 0 )
212, 6, 16, 20syl21anc 1322 . . . . . . 7 (𝜑 → ((invg𝑊)‘𝑋) < 0 )
2215, 21eqbrtrd 4635 . . . . . 6 (𝜑 → (-1 · 𝑋) < 0 )
2322adantr 481 . . . . 5 ((𝜑𝑌 = 0 ) → (-1 · 𝑋) < 0 )
24 simpr 477 . . . . 5 ((𝜑𝑌 = 0 ) → 𝑌 = 0 )
2523, 24breqtrrd 4641 . . . 4 ((𝜑𝑌 = 0 ) → (-1 · 𝑋) < 𝑌)
26 isogrp 29484 . . . . . . . . . 10 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
2726simprbi 480 . . . . . . . . 9 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
28 omndtos 29487 . . . . . . . . 9 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
292, 27, 283syl 18 . . . . . . . 8 (𝜑𝑊 ∈ Toset)
30 tospos 29440 . . . . . . . 8 (𝑊 ∈ Toset → 𝑊 ∈ Poset)
3129, 30syl 17 . . . . . . 7 (𝜑𝑊 ∈ Poset)
327, 18grpidcl 17371 . . . . . . . 8 (𝑊 ∈ Grp → 0𝐵)
332, 3, 323syl 18 . . . . . . 7 (𝜑0𝐵)
34 archirng.l . . . . . . . 8 = (le‘𝑊)
357, 34posref 16872 . . . . . . 7 ((𝑊 ∈ Poset ∧ 0𝐵) → 0 0 )
3631, 33, 35syl2anc 692 . . . . . 6 (𝜑0 0 )
3736adantr 481 . . . . 5 ((𝜑𝑌 = 0 ) → 0 0 )
38 1m1e0 11033 . . . . . . . . . 10 (1 − 1) = 0
3938negeqi 10218 . . . . . . . . 9 -(1 − 1) = -0
40 ax-1cn 9938 . . . . . . . . . 10 1 ∈ ℂ
4140, 40negsubdii 10310 . . . . . . . . 9 -(1 − 1) = (-1 + 1)
42 neg0 10271 . . . . . . . . 9 -0 = 0
4339, 41, 423eqtr3i 2651 . . . . . . . 8 (-1 + 1) = 0
4443oveq1i 6614 . . . . . . 7 ((-1 + 1) · 𝑋) = (0 · 𝑋)
457, 18, 8mulg0 17467 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = 0 )
466, 45syl 17 . . . . . . 7 (𝜑 → (0 · 𝑋) = 0 )
4744, 46syl5eq 2667 . . . . . 6 (𝜑 → ((-1 + 1) · 𝑋) = 0 )
4847adantr 481 . . . . 5 ((𝜑𝑌 = 0 ) → ((-1 + 1) · 𝑋) = 0 )
4937, 24, 483brtr4d 4645 . . . 4 ((𝜑𝑌 = 0 ) → 𝑌 ((-1 + 1) · 𝑋))
5025, 49jca 554 . . 3 ((𝜑𝑌 = 0 ) → ((-1 · 𝑋) < 𝑌𝑌 ((-1 + 1) · 𝑋)))
51 oveq1 6611 . . . . . 6 (𝑛 = -1 → (𝑛 · 𝑋) = (-1 · 𝑋))
5251breq1d 4623 . . . . 5 (𝑛 = -1 → ((𝑛 · 𝑋) < 𝑌 ↔ (-1 · 𝑋) < 𝑌))
53 oveq1 6611 . . . . . . 7 (𝑛 = -1 → (𝑛 + 1) = (-1 + 1))
5453oveq1d 6619 . . . . . 6 (𝑛 = -1 → ((𝑛 + 1) · 𝑋) = ((-1 + 1) · 𝑋))
5554breq2d 4625 . . . . 5 (𝑛 = -1 → (𝑌 ((𝑛 + 1) · 𝑋) ↔ 𝑌 ((-1 + 1) · 𝑋)))
5652, 55anbi12d 746 . . . 4 (𝑛 = -1 → (((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) ↔ ((-1 · 𝑋) < 𝑌𝑌 ((-1 + 1) · 𝑋))))
5756rspcev 3295 . . 3 ((-1 ∈ ℤ ∧ ((-1 · 𝑋) < 𝑌𝑌 ((-1 + 1) · 𝑋))) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
581, 50, 57sylancr 694 . 2 ((𝜑𝑌 = 0 ) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
59 simpr 477 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
6059nn0zd 11424 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℤ)
6160ad2antrr 761 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → 𝑚 ∈ ℤ)
6261znegcld 11428 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → -𝑚 ∈ ℤ)
63 2z 11353 . . . . . . 7 2 ∈ ℤ
6463a1i 11 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → 2 ∈ ℤ)
6562, 64zsubcld 11431 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → (-𝑚 − 2) ∈ ℤ)
66 nn0cn 11246 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
6766adantl 482 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
68 2cnd 11037 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 2 ∈ ℂ)
6967, 68negdi2d 10350 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → -(𝑚 + 2) = (-𝑚 − 2))
7069oveq1d 6619 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 2) · 𝑋) = ((-𝑚 − 2) · 𝑋))
712ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑊 ∈ oGrp)
72 archirngz.1 . . . . . . . . . . . 12 (𝜑 → (oppg𝑊) ∈ oGrp)
7372ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (oppg𝑊) ∈ oGrp)
7471, 73jca 554 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp))
754ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑊 ∈ Grp)
7660peano2zd 11429 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 1) ∈ ℤ)
776ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑋𝐵)
787, 8mulgcl 17480 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ (𝑚 + 1) ∈ ℤ ∧ 𝑋𝐵) → ((𝑚 + 1) · 𝑋) ∈ 𝐵)
7975, 76, 77, 78syl3anc 1323 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) · 𝑋) ∈ 𝐵)
8063a1i 11 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 2 ∈ ℤ)
8160, 80zaddcld 11430 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 2) ∈ ℤ)
827, 8mulgcl 17480 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ (𝑚 + 2) ∈ ℤ ∧ 𝑋𝐵) → ((𝑚 + 2) · 𝑋) ∈ 𝐵)
8375, 81, 77, 82syl3anc 1323 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 2) · 𝑋) ∈ 𝐵)
8475, 32syl 17 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 0𝐵)
8516ad2antrr 761 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 0 < 𝑋)
86 eqid 2621 . . . . . . . . . . . . 13 (+g𝑊) = (+g𝑊)
877, 17, 86ogrpaddlt 29500 . . . . . . . . . . . 12 ((𝑊 ∈ oGrp ∧ ( 0𝐵𝑋𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) ∧ 0 < 𝑋) → ( 0 (+g𝑊)((𝑚 + 1) · 𝑋)) < (𝑋(+g𝑊)((𝑚 + 1) · 𝑋)))
8871, 84, 77, 79, 85, 87syl131anc 1336 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ( 0 (+g𝑊)((𝑚 + 1) · 𝑋)) < (𝑋(+g𝑊)((𝑚 + 1) · 𝑋)))
897, 86, 18grplid 17373 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) → ( 0 (+g𝑊)((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) · 𝑋))
9075, 79, 89syl2anc 692 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ( 0 (+g𝑊)((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) · 𝑋))
91 1cnd 10000 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ0 → 1 ∈ ℂ)
9266, 91, 91addassd 10006 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 → ((𝑚 + 1) + 1) = (𝑚 + (1 + 1)))
93 1p1e2 11078 . . . . . . . . . . . . . . . . 17 (1 + 1) = 2
9493oveq2i 6615 . . . . . . . . . . . . . . . 16 (𝑚 + (1 + 1)) = (𝑚 + 2)
9592, 94syl6eq 2671 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → ((𝑚 + 1) + 1) = (𝑚 + 2))
9666, 91addcld 10003 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℂ)
9796, 91addcomd 10182 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → ((𝑚 + 1) + 1) = (1 + (𝑚 + 1)))
9895, 97eqtr3d 2657 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → (𝑚 + 2) = (1 + (𝑚 + 1)))
9998oveq1d 6619 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 → ((𝑚 + 2) · 𝑋) = ((1 + (𝑚 + 1)) · 𝑋))
10099adantl 482 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 2) · 𝑋) = ((1 + (𝑚 + 1)) · 𝑋))
101 1zzd 11352 . . . . . . . . . . . . 13 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℤ)
1027, 8, 86mulgdir 17494 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ (1 ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ ∧ 𝑋𝐵)) → ((1 + (𝑚 + 1)) · 𝑋) = ((1 · 𝑋)(+g𝑊)((𝑚 + 1) · 𝑋)))
10375, 101, 76, 77, 102syl13anc 1325 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((1 + (𝑚 + 1)) · 𝑋) = ((1 · 𝑋)(+g𝑊)((𝑚 + 1) · 𝑋)))
10477, 12syl 17 . . . . . . . . . . . . 13 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (1 · 𝑋) = 𝑋)
105104oveq1d 6619 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((1 · 𝑋)(+g𝑊)((𝑚 + 1) · 𝑋)) = (𝑋(+g𝑊)((𝑚 + 1) · 𝑋)))
106100, 103, 1053eqtrrd 2660 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑋(+g𝑊)((𝑚 + 1) · 𝑋)) = ((𝑚 + 2) · 𝑋))
10788, 90, 1063brtr3d 4644 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) · 𝑋) < ((𝑚 + 2) · 𝑋))
1087, 17, 9ogrpinvlt 29506 . . . . . . . . . . 11 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp) ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵 ∧ ((𝑚 + 2) · 𝑋) ∈ 𝐵) → (((𝑚 + 1) · 𝑋) < ((𝑚 + 2) · 𝑋) ↔ ((invg𝑊)‘((𝑚 + 2) · 𝑋)) < ((invg𝑊)‘((𝑚 + 1) · 𝑋))))
109108biimpa 501 . . . . . . . . . 10 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp) ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵 ∧ ((𝑚 + 2) · 𝑋) ∈ 𝐵) ∧ ((𝑚 + 1) · 𝑋) < ((𝑚 + 2) · 𝑋)) → ((invg𝑊)‘((𝑚 + 2) · 𝑋)) < ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
11074, 79, 83, 107, 109syl31anc 1326 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((invg𝑊)‘((𝑚 + 2) · 𝑋)) < ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
1117, 8, 9mulgneg 17481 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ (𝑚 + 2) ∈ ℤ ∧ 𝑋𝐵) → (-(𝑚 + 2) · 𝑋) = ((invg𝑊)‘((𝑚 + 2) · 𝑋)))
11275, 81, 77, 111syl3anc 1323 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 2) · 𝑋) = ((invg𝑊)‘((𝑚 + 2) · 𝑋)))
1137, 8, 9mulgneg 17481 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ (𝑚 + 1) ∈ ℤ ∧ 𝑋𝐵) → (-(𝑚 + 1) · 𝑋) = ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
11475, 76, 77, 113syl3anc 1323 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 1) · 𝑋) = ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
115110, 112, 1143brtr4d 4645 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 2) · 𝑋) < (-(𝑚 + 1) · 𝑋))
11670, 115eqbrtrrd 4637 . . . . . . 7 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-𝑚 − 2) · 𝑋) < (-(𝑚 + 1) · 𝑋))
117116ad2antrr 761 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((-𝑚 − 2) · 𝑋) < (-(𝑚 + 1) · 𝑋))
118114ad2antrr 761 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → (-(𝑚 + 1) · 𝑋) = ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
11931ad4antr 767 . . . . . . . . 9 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → 𝑊 ∈ Poset)
120 archirng.4 . . . . . . . . . . . 12 (𝜑𝑌𝐵)
1217, 9grpinvcl 17388 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝑌𝐵) → ((invg𝑊)‘𝑌) ∈ 𝐵)
1224, 120, 121syl2anc 692 . . . . . . . . . . 11 (𝜑 → ((invg𝑊)‘𝑌) ∈ 𝐵)
123122ad2antrr 761 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((invg𝑊)‘𝑌) ∈ 𝐵)
124123ad2antrr 761 . . . . . . . . 9 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((invg𝑊)‘𝑌) ∈ 𝐵)
12579ad2antrr 761 . . . . . . . . 9 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((𝑚 + 1) · 𝑋) ∈ 𝐵)
126 simplrr 800 . . . . . . . . 9 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))
127 simpr 477 . . . . . . . . 9 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌))
1287, 34posasymb 16873 . . . . . . . . . 10 ((𝑊 ∈ Poset ∧ ((invg𝑊)‘𝑌) ∈ 𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) → ((((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) ↔ ((invg𝑊)‘𝑌) = ((𝑚 + 1) · 𝑋)))
129128biimpa 501 . . . . . . . . 9 (((𝑊 ∈ Poset ∧ ((invg𝑊)‘𝑌) ∈ 𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) ∧ (((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌))) → ((invg𝑊)‘𝑌) = ((𝑚 + 1) · 𝑋))
130119, 124, 125, 126, 127, 129syl32anc 1331 . . . . . . . 8 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((invg𝑊)‘𝑌) = ((𝑚 + 1) · 𝑋))
131130fveq2d 6152 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((invg𝑊)‘((invg𝑊)‘𝑌)) = ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
1327, 9grpinvinv 17403 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 𝑌𝐵) → ((invg𝑊)‘((invg𝑊)‘𝑌)) = 𝑌)
1334, 120, 132syl2anc 692 . . . . . . . 8 (𝜑 → ((invg𝑊)‘((invg𝑊)‘𝑌)) = 𝑌)
134133ad4antr 767 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((invg𝑊)‘((invg𝑊)‘𝑌)) = 𝑌)
135118, 131, 1343eqtr2rd 2662 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → 𝑌 = (-(𝑚 + 1) · 𝑋))
136117, 135breqtrrd 4641 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((-𝑚 − 2) · 𝑋) < 𝑌)
137 1cnd 10000 . . . . . . . . . . . . 13 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℂ)
13867, 68, 137addsubassd 10356 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 2) − 1) = (𝑚 + (2 − 1)))
139 2m1e1 11079 . . . . . . . . . . . . 13 (2 − 1) = 1
140139oveq2i 6615 . . . . . . . . . . . 12 (𝑚 + (2 − 1)) = (𝑚 + 1)
141138, 140syl6req 2672 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 1) = ((𝑚 + 2) − 1))
142141negeqd 10219 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → -(𝑚 + 1) = -((𝑚 + 2) − 1))
14367, 68addcld 10003 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 2) ∈ ℂ)
144143, 137negsubdid 10351 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → -((𝑚 + 2) − 1) = (-(𝑚 + 2) + 1))
14569oveq1d 6619 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 2) + 1) = ((-𝑚 − 2) + 1))
146142, 144, 1453eqtrrd 2660 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-𝑚 − 2) + 1) = -(𝑚 + 1))
147146oveq1d 6619 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (((-𝑚 − 2) + 1) · 𝑋) = (-(𝑚 + 1) · 𝑋))
14829ad2antrr 761 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑊 ∈ Toset)
149148, 30syl 17 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑊 ∈ Poset)
15060znegcld 11428 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → -𝑚 ∈ ℤ)
151150, 80zsubcld 11431 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-𝑚 − 2) ∈ ℤ)
152151peano2zd 11429 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-𝑚 − 2) + 1) ∈ ℤ)
1537, 8mulgcl 17480 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ ((-𝑚 − 2) + 1) ∈ ℤ ∧ 𝑋𝐵) → (((-𝑚 − 2) + 1) · 𝑋) ∈ 𝐵)
15475, 152, 77, 153syl3anc 1323 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (((-𝑚 − 2) + 1) · 𝑋) ∈ 𝐵)
1557, 34posref 16872 . . . . . . . . 9 ((𝑊 ∈ Poset ∧ (((-𝑚 − 2) + 1) · 𝑋) ∈ 𝐵) → (((-𝑚 − 2) + 1) · 𝑋) (((-𝑚 − 2) + 1) · 𝑋))
156149, 154, 155syl2anc 692 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (((-𝑚 − 2) + 1) · 𝑋) (((-𝑚 − 2) + 1) · 𝑋))
157147, 156eqbrtrrd 4637 . . . . . . 7 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 1) · 𝑋) (((-𝑚 − 2) + 1) · 𝑋))
158157ad2antrr 761 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → (-(𝑚 + 1) · 𝑋) (((-𝑚 − 2) + 1) · 𝑋))
159135, 158eqbrtrd 4635 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → 𝑌 (((-𝑚 − 2) + 1) · 𝑋))
160 oveq1 6611 . . . . . . . 8 (𝑛 = (-𝑚 − 2) → (𝑛 · 𝑋) = ((-𝑚 − 2) · 𝑋))
161160breq1d 4623 . . . . . . 7 (𝑛 = (-𝑚 − 2) → ((𝑛 · 𝑋) < 𝑌 ↔ ((-𝑚 − 2) · 𝑋) < 𝑌))
162 oveq1 6611 . . . . . . . . 9 (𝑛 = (-𝑚 − 2) → (𝑛 + 1) = ((-𝑚 − 2) + 1))
163162oveq1d 6619 . . . . . . . 8 (𝑛 = (-𝑚 − 2) → ((𝑛 + 1) · 𝑋) = (((-𝑚 − 2) + 1) · 𝑋))
164163breq2d 4625 . . . . . . 7 (𝑛 = (-𝑚 − 2) → (𝑌 ((𝑛 + 1) · 𝑋) ↔ 𝑌 (((-𝑚 − 2) + 1) · 𝑋)))
165161, 164anbi12d 746 . . . . . 6 (𝑛 = (-𝑚 − 2) → (((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) ↔ (((-𝑚 − 2) · 𝑋) < 𝑌𝑌 (((-𝑚 − 2) + 1) · 𝑋))))
166165rspcev 3295 . . . . 5 (((-𝑚 − 2) ∈ ℤ ∧ (((-𝑚 − 2) · 𝑋) < 𝑌𝑌 (((-𝑚 − 2) + 1) · 𝑋))) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
16765, 136, 159, 166syl12anc 1321 . . . 4 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
16876ad2antrr 761 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → (𝑚 + 1) ∈ ℤ)
169168znegcld 11428 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → -(𝑚 + 1) ∈ ℤ)
1702ad2antrr 761 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ (𝑚 ∈ ℕ0 ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋)) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋))) → 𝑊 ∈ oGrp)
17172ad2antrr 761 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ (𝑚 ∈ ℕ0 ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋)) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋))) → (oppg𝑊) ∈ oGrp)
172170, 171jca 554 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ (𝑚 ∈ ℕ0 ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋)) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋))) → (𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp))
1731723anassrs 1287 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → (𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp))
174123ad2antrr 761 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘𝑌) ∈ 𝐵)
17579ad2antrr 761 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((𝑚 + 1) · 𝑋) ∈ 𝐵)
176 simpr 477 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋))
1777, 17, 9ogrpinvlt 29506 . . . . . . . 8 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp) ∧ ((invg𝑊)‘𝑌) ∈ 𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) → (((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋) ↔ ((invg𝑊)‘((𝑚 + 1) · 𝑋)) < ((invg𝑊)‘((invg𝑊)‘𝑌))))
178177biimpa 501 . . . . . . 7 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp) ∧ ((invg𝑊)‘𝑌) ∈ 𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘((𝑚 + 1) · 𝑋)) < ((invg𝑊)‘((invg𝑊)‘𝑌)))
179173, 174, 175, 176, 178syl31anc 1326 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘((𝑚 + 1) · 𝑋)) < ((invg𝑊)‘((invg𝑊)‘𝑌)))
180114ad2antrr 761 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → (-(𝑚 + 1) · 𝑋) = ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
181180eqcomd 2627 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘((𝑚 + 1) · 𝑋)) = (-(𝑚 + 1) · 𝑋))
182133ad4antr 767 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘((invg𝑊)‘𝑌)) = 𝑌)
183179, 181, 1823brtr3d 4644 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → (-(𝑚 + 1) · 𝑋) < 𝑌)
184 simp-4l 805 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → 𝜑)
1857, 8mulgcl 17480 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑋𝐵) → (𝑚 · 𝑋) ∈ 𝐵)
18675, 60, 77, 185syl3anc 1323 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 · 𝑋) ∈ 𝐵)
1877, 17, 9ogrpinvlt 29506 . . . . . . . . . . 11 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp) ∧ (𝑚 · 𝑋) ∈ 𝐵 ∧ ((invg𝑊)‘𝑌) ∈ 𝐵) → ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ↔ ((invg𝑊)‘((invg𝑊)‘𝑌)) < ((invg𝑊)‘(𝑚 · 𝑋))))
18874, 186, 123, 187syl3anc 1323 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ↔ ((invg𝑊)‘((invg𝑊)‘𝑌)) < ((invg𝑊)‘(𝑚 · 𝑋))))
189188biimpa 501 . . . . . . . . 9 ((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 · 𝑋) < ((invg𝑊)‘𝑌)) → ((invg𝑊)‘((invg𝑊)‘𝑌)) < ((invg𝑊)‘(𝑚 · 𝑋)))
190189adantrr 752 . . . . . . . 8 ((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) → ((invg𝑊)‘((invg𝑊)‘𝑌)) < ((invg𝑊)‘(𝑚 · 𝑋)))
191190adantr 481 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘((invg𝑊)‘𝑌)) < ((invg𝑊)‘(𝑚 · 𝑋)))
192 negdi 10282 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝑚 + 1) = (-𝑚 + -1))
19366, 40, 192sylancl 693 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → -(𝑚 + 1) = (-𝑚 + -1))
194193oveq1d 6619 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 → (-(𝑚 + 1) + 1) = ((-𝑚 + -1) + 1))
19566negcld 10323 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → -𝑚 ∈ ℂ)
19691negcld 10323 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → -1 ∈ ℂ)
197195, 196, 91addassd 10006 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → ((-𝑚 + -1) + 1) = (-𝑚 + (-1 + 1)))
19843oveq2i 6615 . . . . . . . . . . . . . . 15 (-𝑚 + (-1 + 1)) = (-𝑚 + 0)
199198a1i 11 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → (-𝑚 + (-1 + 1)) = (-𝑚 + 0))
200195addid1d 10180 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → (-𝑚 + 0) = -𝑚)
201197, 199, 2003eqtrd 2659 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 → ((-𝑚 + -1) + 1) = -𝑚)
202194, 201eqtrd 2655 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0 → (-(𝑚 + 1) + 1) = -𝑚)
203202oveq1d 6619 . . . . . . . . . . 11 (𝑚 ∈ ℕ0 → ((-(𝑚 + 1) + 1) · 𝑋) = (-𝑚 · 𝑋))
204203adantl 482 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-(𝑚 + 1) + 1) · 𝑋) = (-𝑚 · 𝑋))
2057, 8, 9mulgneg 17481 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑋𝐵) → (-𝑚 · 𝑋) = ((invg𝑊)‘(𝑚 · 𝑋)))
20675, 60, 77, 205syl3anc 1323 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-𝑚 · 𝑋) = ((invg𝑊)‘(𝑚 · 𝑋)))
207204, 206eqtrd 2655 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-(𝑚 + 1) + 1) · 𝑋) = ((invg𝑊)‘(𝑚 · 𝑋)))
208207ad2antrr 761 . . . . . . . 8 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((-(𝑚 + 1) + 1) · 𝑋) = ((invg𝑊)‘(𝑚 · 𝑋)))
209208eqcomd 2627 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘(𝑚 · 𝑋)) = ((-(𝑚 + 1) + 1) · 𝑋))
210191, 182, 2093brtr3d 4644 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → 𝑌 < ((-(𝑚 + 1) + 1) · 𝑋))
211 ovex 6632 . . . . . . . 8 ((-(𝑚 + 1) + 1) · 𝑋) ∈ V
212211a1i 11 . . . . . . 7 (𝜑 → ((-(𝑚 + 1) + 1) · 𝑋) ∈ V)
21334, 17pltle 16882 . . . . . . 7 ((𝑊 ∈ oGrp ∧ 𝑌𝐵 ∧ ((-(𝑚 + 1) + 1) · 𝑋) ∈ V) → (𝑌 < ((-(𝑚 + 1) + 1) · 𝑋) → 𝑌 ((-(𝑚 + 1) + 1) · 𝑋)))
2142, 120, 212, 213syl3anc 1323 . . . . . 6 (𝜑 → (𝑌 < ((-(𝑚 + 1) + 1) · 𝑋) → 𝑌 ((-(𝑚 + 1) + 1) · 𝑋)))
215184, 210, 214sylc 65 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → 𝑌 ((-(𝑚 + 1) + 1) · 𝑋))
216 oveq1 6611 . . . . . . . 8 (𝑛 = -(𝑚 + 1) → (𝑛 · 𝑋) = (-(𝑚 + 1) · 𝑋))
217216breq1d 4623 . . . . . . 7 (𝑛 = -(𝑚 + 1) → ((𝑛 · 𝑋) < 𝑌 ↔ (-(𝑚 + 1) · 𝑋) < 𝑌))
218 oveq1 6611 . . . . . . . . 9 (𝑛 = -(𝑚 + 1) → (𝑛 + 1) = (-(𝑚 + 1) + 1))
219218oveq1d 6619 . . . . . . . 8 (𝑛 = -(𝑚 + 1) → ((𝑛 + 1) · 𝑋) = ((-(𝑚 + 1) + 1) · 𝑋))
220219breq2d 4625 . . . . . . 7 (𝑛 = -(𝑚 + 1) → (𝑌 ((𝑛 + 1) · 𝑋) ↔ 𝑌 ((-(𝑚 + 1) + 1) · 𝑋)))
221217, 220anbi12d 746 . . . . . 6 (𝑛 = -(𝑚 + 1) → (((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) ↔ ((-(𝑚 + 1) · 𝑋) < 𝑌𝑌 ((-(𝑚 + 1) + 1) · 𝑋))))
222221rspcev 3295 . . . . 5 ((-(𝑚 + 1) ∈ ℤ ∧ ((-(𝑚 + 1) · 𝑋) < 𝑌𝑌 ((-(𝑚 + 1) + 1) · 𝑋))) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
223169, 183, 215, 222syl12anc 1321 . . . 4 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
2247, 34, 17tlt2 29446 . . . . . 6 ((𝑊 ∈ Toset ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵 ∧ ((invg𝑊)‘𝑌) ∈ 𝐵) → (((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌) ∨ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)))
225148, 79, 123, 224syl3anc 1323 . . . . 5 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌) ∨ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)))
226225adantr 481 . . . 4 ((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) → (((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌) ∨ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)))
227167, 223, 226mpjaodan 826 . . 3 ((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
2282adantr 481 . . . 4 ((𝜑𝑌 < 0 ) → 𝑊 ∈ oGrp)
229 archirng.2 . . . . 5 (𝜑𝑊 ∈ Archi)
230229adantr 481 . . . 4 ((𝜑𝑌 < 0 ) → 𝑊 ∈ Archi)
2316adantr 481 . . . 4 ((𝜑𝑌 < 0 ) → 𝑋𝐵)
232122adantr 481 . . . 4 ((𝜑𝑌 < 0 ) → ((invg𝑊)‘𝑌) ∈ 𝐵)
23316adantr 481 . . . 4 ((𝜑𝑌 < 0 ) → 0 < 𝑋)
234133breq1d 4623 . . . . . 6 (𝜑 → (((invg𝑊)‘((invg𝑊)‘𝑌)) < 0𝑌 < 0 ))
235234biimpar 502 . . . . 5 ((𝜑𝑌 < 0 ) → ((invg𝑊)‘((invg𝑊)‘𝑌)) < 0 )
2367, 17, 9, 18ogrpinv0lt 29505 . . . . . . 7 ((𝑊 ∈ oGrp ∧ ((invg𝑊)‘𝑌) ∈ 𝐵) → ( 0 < ((invg𝑊)‘𝑌) ↔ ((invg𝑊)‘((invg𝑊)‘𝑌)) < 0 ))
2372, 122, 236syl2anc 692 . . . . . 6 (𝜑 → ( 0 < ((invg𝑊)‘𝑌) ↔ ((invg𝑊)‘((invg𝑊)‘𝑌)) < 0 ))
238237biimpar 502 . . . . 5 ((𝜑 ∧ ((invg𝑊)‘((invg𝑊)‘𝑌)) < 0 ) → 0 < ((invg𝑊)‘𝑌))
239235, 238syldan 487 . . . 4 ((𝜑𝑌 < 0 ) → 0 < ((invg𝑊)‘𝑌))
2407, 18, 17, 34, 8, 228, 230, 231, 232, 233, 239archirng 29524 . . 3 ((𝜑𝑌 < 0 ) → ∃𝑚 ∈ ℕ0 ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋)))
241227, 240r19.29a 3071 . 2 ((𝜑𝑌 < 0 ) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
242 nn0ssz 11342 . . 3 0 ⊆ ℤ
2432adantr 481 . . . 4 ((𝜑0 < 𝑌) → 𝑊 ∈ oGrp)
244229adantr 481 . . . 4 ((𝜑0 < 𝑌) → 𝑊 ∈ Archi)
2456adantr 481 . . . 4 ((𝜑0 < 𝑌) → 𝑋𝐵)
246120adantr 481 . . . 4 ((𝜑0 < 𝑌) → 𝑌𝐵)
24716adantr 481 . . . 4 ((𝜑0 < 𝑌) → 0 < 𝑋)
248 simpr 477 . . . 4 ((𝜑0 < 𝑌) → 0 < 𝑌)
2497, 18, 17, 34, 8, 243, 244, 245, 246, 247, 248archirng 29524 . . 3 ((𝜑0 < 𝑌) → ∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
250 ssrexv 3646 . . 3 (ℕ0 ⊆ ℤ → (∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋))))
251242, 249, 250mpsyl 68 . 2 ((𝜑0 < 𝑌) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
2527, 17tlt3 29447 . . 3 ((𝑊 ∈ Toset ∧ 𝑌𝐵0𝐵) → (𝑌 = 0𝑌 < 00 < 𝑌))
25329, 120, 33, 252syl3anc 1323 . 2 (𝜑 → (𝑌 = 0𝑌 < 00 < 𝑌))
25458, 241, 251, 253mpjao3dan 1392 1 (𝜑 → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3o 1035  w3a 1036   = wceq 1480  wcel 1987  wrex 2908  Vcvv 3186  wss 3555   class class class wbr 4613  cfv 5847  (class class class)co 6604  cc 9878  0cc0 9880  1c1 9881   + caddc 9883  cmin 10210  -cneg 10211  2c2 11014  0cn0 11236  cz 11321  Basecbs 15781  +gcplusg 15862  lecple 15869  0gc0g 16021  Posetcpo 16861  ltcplt 16862  Tosetctos 16954  Grpcgrp 17343  invgcminusg 17344  .gcmg 17461  oppgcoppg 17696  oMndcomnd 29479  oGrpcogrp 29480  Archicarchi 29513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-seq 12742  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-plusg 15875  df-ple 15882  df-0g 16023  df-preset 16849  df-poset 16867  df-plt 16879  df-toset 16955  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-mulg 17462  df-oppg 17697  df-omnd 29481  df-ogrp 29482  df-inftm 29514  df-archi 29515
This theorem is referenced by:  archiabllem2c  29531
  Copyright terms: Public domain W3C validator