MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  archnq Structured version   Visualization version   GIF version

Theorem archnq 9747
Description: For any fraction, there is an integer that is greater than it. This is also known as the "archimedean property". (Contributed by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
archnq (𝐴Q → ∃𝑥N 𝐴 <Q𝑥, 1𝑜⟩)
Distinct variable group:   𝑥,𝐴

Proof of Theorem archnq
StepHypRef Expression
1 elpqn 9692 . . . 4 (𝐴Q𝐴 ∈ (N × N))
2 xp1st 7146 . . . 4 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
31, 2syl 17 . . 3 (𝐴Q → (1st𝐴) ∈ N)
4 1pi 9650 . . 3 1𝑜N
5 addclpi 9659 . . 3 (((1st𝐴) ∈ N ∧ 1𝑜N) → ((1st𝐴) +N 1𝑜) ∈ N)
63, 4, 5sylancl 693 . 2 (𝐴Q → ((1st𝐴) +N 1𝑜) ∈ N)
7 xp2nd 7147 . . . . . 6 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
81, 7syl 17 . . . . 5 (𝐴Q → (2nd𝐴) ∈ N)
9 mulclpi 9660 . . . . 5 ((((1st𝐴) +N 1𝑜) ∈ N ∧ (2nd𝐴) ∈ N) → (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) ∈ N)
106, 8, 9syl2anc 692 . . . 4 (𝐴Q → (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) ∈ N)
11 eqid 2626 . . . . . . 7 ((1st𝐴) +N 1𝑜) = ((1st𝐴) +N 1𝑜)
12 oveq2 6613 . . . . . . . . 9 (𝑥 = 1𝑜 → ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1𝑜))
1312eqeq1d 2628 . . . . . . . 8 (𝑥 = 1𝑜 → (((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1𝑜) ↔ ((1st𝐴) +N 1𝑜) = ((1st𝐴) +N 1𝑜)))
1413rspcev 3300 . . . . . . 7 ((1𝑜N ∧ ((1st𝐴) +N 1𝑜) = ((1st𝐴) +N 1𝑜)) → ∃𝑥N ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1𝑜))
154, 11, 14mp2an 707 . . . . . 6 𝑥N ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1𝑜)
16 ltexpi 9669 . . . . . 6 (((1st𝐴) ∈ N ∧ ((1st𝐴) +N 1𝑜) ∈ N) → ((1st𝐴) <N ((1st𝐴) +N 1𝑜) ↔ ∃𝑥N ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1𝑜)))
1715, 16mpbiri 248 . . . . 5 (((1st𝐴) ∈ N ∧ ((1st𝐴) +N 1𝑜) ∈ N) → (1st𝐴) <N ((1st𝐴) +N 1𝑜))
183, 6, 17syl2anc 692 . . . 4 (𝐴Q → (1st𝐴) <N ((1st𝐴) +N 1𝑜))
19 nlt1pi 9673 . . . . 5 ¬ (2nd𝐴) <N 1𝑜
20 ltmpi 9671 . . . . . . 7 (((1st𝐴) +N 1𝑜) ∈ N → ((2nd𝐴) <N 1𝑜 ↔ (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) <N (((1st𝐴) +N 1𝑜) ·N 1𝑜)))
216, 20syl 17 . . . . . 6 (𝐴Q → ((2nd𝐴) <N 1𝑜 ↔ (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) <N (((1st𝐴) +N 1𝑜) ·N 1𝑜)))
22 mulidpi 9653 . . . . . . . 8 (((1st𝐴) +N 1𝑜) ∈ N → (((1st𝐴) +N 1𝑜) ·N 1𝑜) = ((1st𝐴) +N 1𝑜))
236, 22syl 17 . . . . . . 7 (𝐴Q → (((1st𝐴) +N 1𝑜) ·N 1𝑜) = ((1st𝐴) +N 1𝑜))
2423breq2d 4630 . . . . . 6 (𝐴Q → ((((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) <N (((1st𝐴) +N 1𝑜) ·N 1𝑜) ↔ (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) <N ((1st𝐴) +N 1𝑜)))
2521, 24bitrd 268 . . . . 5 (𝐴Q → ((2nd𝐴) <N 1𝑜 ↔ (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) <N ((1st𝐴) +N 1𝑜)))
2619, 25mtbii 316 . . . 4 (𝐴Q → ¬ (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) <N ((1st𝐴) +N 1𝑜))
27 ltsopi 9655 . . . . 5 <N Or N
28 ltrelpi 9656 . . . . 5 <N ⊆ (N × N)
2927, 28sotri3 5489 . . . 4 (((((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) ∈ N ∧ (1st𝐴) <N ((1st𝐴) +N 1𝑜) ∧ ¬ (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) <N ((1st𝐴) +N 1𝑜)) → (1st𝐴) <N (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)))
3010, 18, 26, 29syl3anc 1323 . . 3 (𝐴Q → (1st𝐴) <N (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)))
31 pinq 9694 . . . . . 6 (((1st𝐴) +N 1𝑜) ∈ N → ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩ ∈ Q)
326, 31syl 17 . . . . 5 (𝐴Q → ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩ ∈ Q)
33 ordpinq 9710 . . . . 5 ((𝐴Q ∧ ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩ ∈ Q) → (𝐴 <Q ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩ ↔ ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩)) <N ((1st ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) ·N (2nd𝐴))))
3432, 33mpdan 701 . . . 4 (𝐴Q → (𝐴 <Q ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩ ↔ ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩)) <N ((1st ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) ·N (2nd𝐴))))
35 ovex 6633 . . . . . . . 8 ((1st𝐴) +N 1𝑜) ∈ V
364elexi 3204 . . . . . . . 8 1𝑜 ∈ V
3735, 36op2nd 7125 . . . . . . 7 (2nd ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) = 1𝑜
3837oveq2i 6616 . . . . . 6 ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩)) = ((1st𝐴) ·N 1𝑜)
39 mulidpi 9653 . . . . . . 7 ((1st𝐴) ∈ N → ((1st𝐴) ·N 1𝑜) = (1st𝐴))
403, 39syl 17 . . . . . 6 (𝐴Q → ((1st𝐴) ·N 1𝑜) = (1st𝐴))
4138, 40syl5eq 2672 . . . . 5 (𝐴Q → ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩)) = (1st𝐴))
4235, 36op1st 7124 . . . . . . 7 (1st ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) = ((1st𝐴) +N 1𝑜)
4342oveq1i 6615 . . . . . 6 ((1st ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) ·N (2nd𝐴)) = (((1st𝐴) +N 1𝑜) ·N (2nd𝐴))
4443a1i 11 . . . . 5 (𝐴Q → ((1st ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) ·N (2nd𝐴)) = (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)))
4541, 44breq12d 4631 . . . 4 (𝐴Q → (((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩)) <N ((1st ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) ·N (2nd𝐴)) ↔ (1st𝐴) <N (((1st𝐴) +N 1𝑜) ·N (2nd𝐴))))
4634, 45bitrd 268 . . 3 (𝐴Q → (𝐴 <Q ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩ ↔ (1st𝐴) <N (((1st𝐴) +N 1𝑜) ·N (2nd𝐴))))
4730, 46mpbird 247 . 2 (𝐴Q𝐴 <Q ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩)
48 opeq1 4375 . . . 4 (𝑥 = ((1st𝐴) +N 1𝑜) → ⟨𝑥, 1𝑜⟩ = ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩)
4948breq2d 4630 . . 3 (𝑥 = ((1st𝐴) +N 1𝑜) → (𝐴 <Q𝑥, 1𝑜⟩ ↔ 𝐴 <Q ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩))
5049rspcev 3300 . 2 ((((1st𝐴) +N 1𝑜) ∈ N𝐴 <Q ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) → ∃𝑥N 𝐴 <Q𝑥, 1𝑜⟩)
516, 47, 50syl2anc 692 1 (𝐴Q → ∃𝑥N 𝐴 <Q𝑥, 1𝑜⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wrex 2913  cop 4159   class class class wbr 4618   × cxp 5077  cfv 5850  (class class class)co 6605  1st c1st 7114  2nd c2nd 7115  1𝑜c1o 7499  Ncnpi 9611   +N cpli 9612   ·N cmi 9613   <N clti 9614  Qcnq 9619   <Q cltq 9625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-omul 7511  df-ni 9639  df-pli 9640  df-mi 9641  df-lti 9642  df-ltpq 9677  df-nq 9679  df-ltnq 9685
This theorem is referenced by:  prlem934  9800
  Copyright terms: Public domain W3C validator