MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  archnq Structured version   Visualization version   GIF version

Theorem archnq 10390
Description: For any fraction, there is an integer that is greater than it. This is also known as the "archimedean property". (Contributed by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
archnq (𝐴Q → ∃𝑥N 𝐴 <Q𝑥, 1o⟩)
Distinct variable group:   𝑥,𝐴

Proof of Theorem archnq
StepHypRef Expression
1 elpqn 10335 . . . 4 (𝐴Q𝐴 ∈ (N × N))
2 xp1st 7710 . . . 4 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
31, 2syl 17 . . 3 (𝐴Q → (1st𝐴) ∈ N)
4 1pi 10293 . . 3 1oN
5 addclpi 10302 . . 3 (((1st𝐴) ∈ N ∧ 1oN) → ((1st𝐴) +N 1o) ∈ N)
63, 4, 5sylancl 586 . 2 (𝐴Q → ((1st𝐴) +N 1o) ∈ N)
7 xp2nd 7711 . . . . . 6 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
81, 7syl 17 . . . . 5 (𝐴Q → (2nd𝐴) ∈ N)
9 mulclpi 10303 . . . . 5 ((((1st𝐴) +N 1o) ∈ N ∧ (2nd𝐴) ∈ N) → (((1st𝐴) +N 1o) ·N (2nd𝐴)) ∈ N)
106, 8, 9syl2anc 584 . . . 4 (𝐴Q → (((1st𝐴) +N 1o) ·N (2nd𝐴)) ∈ N)
11 eqid 2818 . . . . . . 7 ((1st𝐴) +N 1o) = ((1st𝐴) +N 1o)
12 oveq2 7153 . . . . . . . . 9 (𝑥 = 1o → ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1o))
1312eqeq1d 2820 . . . . . . . 8 (𝑥 = 1o → (((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1o) ↔ ((1st𝐴) +N 1o) = ((1st𝐴) +N 1o)))
1413rspcev 3620 . . . . . . 7 ((1oN ∧ ((1st𝐴) +N 1o) = ((1st𝐴) +N 1o)) → ∃𝑥N ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1o))
154, 11, 14mp2an 688 . . . . . 6 𝑥N ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1o)
16 ltexpi 10312 . . . . . 6 (((1st𝐴) ∈ N ∧ ((1st𝐴) +N 1o) ∈ N) → ((1st𝐴) <N ((1st𝐴) +N 1o) ↔ ∃𝑥N ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1o)))
1715, 16mpbiri 259 . . . . 5 (((1st𝐴) ∈ N ∧ ((1st𝐴) +N 1o) ∈ N) → (1st𝐴) <N ((1st𝐴) +N 1o))
183, 6, 17syl2anc 584 . . . 4 (𝐴Q → (1st𝐴) <N ((1st𝐴) +N 1o))
19 nlt1pi 10316 . . . . 5 ¬ (2nd𝐴) <N 1o
20 ltmpi 10314 . . . . . . 7 (((1st𝐴) +N 1o) ∈ N → ((2nd𝐴) <N 1o ↔ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N (((1st𝐴) +N 1o) ·N 1o)))
216, 20syl 17 . . . . . 6 (𝐴Q → ((2nd𝐴) <N 1o ↔ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N (((1st𝐴) +N 1o) ·N 1o)))
22 mulidpi 10296 . . . . . . . 8 (((1st𝐴) +N 1o) ∈ N → (((1st𝐴) +N 1o) ·N 1o) = ((1st𝐴) +N 1o))
236, 22syl 17 . . . . . . 7 (𝐴Q → (((1st𝐴) +N 1o) ·N 1o) = ((1st𝐴) +N 1o))
2423breq2d 5069 . . . . . 6 (𝐴Q → ((((1st𝐴) +N 1o) ·N (2nd𝐴)) <N (((1st𝐴) +N 1o) ·N 1o) ↔ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N ((1st𝐴) +N 1o)))
2521, 24bitrd 280 . . . . 5 (𝐴Q → ((2nd𝐴) <N 1o ↔ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N ((1st𝐴) +N 1o)))
2619, 25mtbii 327 . . . 4 (𝐴Q → ¬ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N ((1st𝐴) +N 1o))
27 ltsopi 10298 . . . . 5 <N Or N
28 ltrelpi 10299 . . . . 5 <N ⊆ (N × N)
2927, 28sotri3 5983 . . . 4 (((((1st𝐴) +N 1o) ·N (2nd𝐴)) ∈ N ∧ (1st𝐴) <N ((1st𝐴) +N 1o) ∧ ¬ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N ((1st𝐴) +N 1o)) → (1st𝐴) <N (((1st𝐴) +N 1o) ·N (2nd𝐴)))
3010, 18, 26, 29syl3anc 1363 . . 3 (𝐴Q → (1st𝐴) <N (((1st𝐴) +N 1o) ·N (2nd𝐴)))
31 pinq 10337 . . . . . 6 (((1st𝐴) +N 1o) ∈ N → ⟨((1st𝐴) +N 1o), 1o⟩ ∈ Q)
326, 31syl 17 . . . . 5 (𝐴Q → ⟨((1st𝐴) +N 1o), 1o⟩ ∈ Q)
33 ordpinq 10353 . . . . 5 ((𝐴Q ∧ ⟨((1st𝐴) +N 1o), 1o⟩ ∈ Q) → (𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩ ↔ ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩)) <N ((1st ‘⟨((1st𝐴) +N 1o), 1o⟩) ·N (2nd𝐴))))
3432, 33mpdan 683 . . . 4 (𝐴Q → (𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩ ↔ ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩)) <N ((1st ‘⟨((1st𝐴) +N 1o), 1o⟩) ·N (2nd𝐴))))
35 ovex 7178 . . . . . . . 8 ((1st𝐴) +N 1o) ∈ V
36 1oex 8099 . . . . . . . 8 1o ∈ V
3735, 36op2nd 7687 . . . . . . 7 (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩) = 1o
3837oveq2i 7156 . . . . . 6 ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩)) = ((1st𝐴) ·N 1o)
39 mulidpi 10296 . . . . . . 7 ((1st𝐴) ∈ N → ((1st𝐴) ·N 1o) = (1st𝐴))
403, 39syl 17 . . . . . 6 (𝐴Q → ((1st𝐴) ·N 1o) = (1st𝐴))
4138, 40syl5eq 2865 . . . . 5 (𝐴Q → ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩)) = (1st𝐴))
4235, 36op1st 7686 . . . . . . 7 (1st ‘⟨((1st𝐴) +N 1o), 1o⟩) = ((1st𝐴) +N 1o)
4342oveq1i 7155 . . . . . 6 ((1st ‘⟨((1st𝐴) +N 1o), 1o⟩) ·N (2nd𝐴)) = (((1st𝐴) +N 1o) ·N (2nd𝐴))
4443a1i 11 . . . . 5 (𝐴Q → ((1st ‘⟨((1st𝐴) +N 1o), 1o⟩) ·N (2nd𝐴)) = (((1st𝐴) +N 1o) ·N (2nd𝐴)))
4541, 44breq12d 5070 . . . 4 (𝐴Q → (((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩)) <N ((1st ‘⟨((1st𝐴) +N 1o), 1o⟩) ·N (2nd𝐴)) ↔ (1st𝐴) <N (((1st𝐴) +N 1o) ·N (2nd𝐴))))
4634, 45bitrd 280 . . 3 (𝐴Q → (𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩ ↔ (1st𝐴) <N (((1st𝐴) +N 1o) ·N (2nd𝐴))))
4730, 46mpbird 258 . 2 (𝐴Q𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩)
48 opeq1 4795 . . . 4 (𝑥 = ((1st𝐴) +N 1o) → ⟨𝑥, 1o⟩ = ⟨((1st𝐴) +N 1o), 1o⟩)
4948breq2d 5069 . . 3 (𝑥 = ((1st𝐴) +N 1o) → (𝐴 <Q𝑥, 1o⟩ ↔ 𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩))
5049rspcev 3620 . 2 ((((1st𝐴) +N 1o) ∈ N𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩) → ∃𝑥N 𝐴 <Q𝑥, 1o⟩)
516, 47, 50syl2anc 584 1 (𝐴Q → ∃𝑥N 𝐴 <Q𝑥, 1o⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wrex 3136  cop 4563   class class class wbr 5057   × cxp 5546  cfv 6348  (class class class)co 7145  1st c1st 7676  2nd c2nd 7677  1oc1o 8084  Ncnpi 10254   +N cpli 10255   ·N cmi 10256   <N clti 10257  Qcnq 10262   <Q cltq 10268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-omul 8096  df-ni 10282  df-pli 10283  df-mi 10284  df-lti 10285  df-ltpq 10320  df-nq 10322  df-ltnq 10328
This theorem is referenced by:  prlem934  10443
  Copyright terms: Public domain W3C validator