Mathbox for Brendan Leahy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirclem5 Structured version   Visualization version   GIF version

Theorem areacirclem5 33163
 Description: Finding the cross-section of a circle. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 22-Sep-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Hypothesis
Ref Expression
areacirc.1 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}
Assertion
Ref Expression
areacirclem5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
Distinct variable groups:   𝑥,𝑦,𝑡,𝑅   𝑡,𝑆
Allowed substitution hints:   𝑆(𝑥,𝑦)

Proof of Theorem areacirclem5
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 areacirc.1 . . . 4 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}
21imaeq1i 5427 . . 3 (𝑆 “ {𝑡}) = ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} “ {𝑡})
3 vex 3192 . . . 4 𝑡 ∈ V
4 imasng 5451 . . . 4 (𝑡 ∈ V → ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} “ {𝑡}) = {𝑢𝑡{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}𝑢})
53, 4ax-mp 5 . . 3 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} “ {𝑡}) = {𝑢𝑡{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}𝑢}
6 df-br 4619 . . . . 5 (𝑡{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}𝑢 ↔ ⟨𝑡, 𝑢⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))})
7 vex 3192 . . . . . 6 𝑢 ∈ V
8 eleq1 2686 . . . . . . . 8 (𝑥 = 𝑡 → (𝑥 ∈ ℝ ↔ 𝑡 ∈ ℝ))
98anbi1d 740 . . . . . . 7 (𝑥 = 𝑡 → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (𝑡 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
10 oveq1 6617 . . . . . . . . 9 (𝑥 = 𝑡 → (𝑥↑2) = (𝑡↑2))
1110oveq1d 6625 . . . . . . . 8 (𝑥 = 𝑡 → ((𝑥↑2) + (𝑦↑2)) = ((𝑡↑2) + (𝑦↑2)))
1211breq1d 4628 . . . . . . 7 (𝑥 = 𝑡 → (((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2) ↔ ((𝑡↑2) + (𝑦↑2)) ≤ (𝑅↑2)))
139, 12anbi12d 746 . . . . . 6 (𝑥 = 𝑡 → (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2)) ↔ ((𝑡 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑡↑2) + (𝑦↑2)) ≤ (𝑅↑2))))
14 eleq1 2686 . . . . . . . 8 (𝑦 = 𝑢 → (𝑦 ∈ ℝ ↔ 𝑢 ∈ ℝ))
1514anbi2d 739 . . . . . . 7 (𝑦 = 𝑢 → ((𝑡 ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)))
16 oveq1 6617 . . . . . . . . 9 (𝑦 = 𝑢 → (𝑦↑2) = (𝑢↑2))
1716oveq2d 6626 . . . . . . . 8 (𝑦 = 𝑢 → ((𝑡↑2) + (𝑦↑2)) = ((𝑡↑2) + (𝑢↑2)))
1817breq1d 4628 . . . . . . 7 (𝑦 = 𝑢 → (((𝑡↑2) + (𝑦↑2)) ≤ (𝑅↑2) ↔ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))
1915, 18anbi12d 746 . . . . . 6 (𝑦 = 𝑢 → (((𝑡 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑡↑2) + (𝑦↑2)) ≤ (𝑅↑2)) ↔ ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))))
203, 7, 13, 19opelopab 4962 . . . . 5 (⟨𝑡, 𝑢⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} ↔ ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))
21 anass 680 . . . . 5 (((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) ↔ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))))
226, 20, 213bitri 286 . . . 4 (𝑡{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}𝑢 ↔ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))))
2322abbii 2736 . . 3 {𝑢𝑡{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}𝑢} = {𝑢 ∣ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))}
242, 5, 233eqtri 2647 . 2 (𝑆 “ {𝑡}) = {𝑢 ∣ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))}
25 simp3 1061 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
2625biantrurd 529 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) ↔ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))))
2726abbidv 2738 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = {𝑢 ∣ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))})
28 resqcl 12878 . . . . . . . . . . . 12 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℝ)
29283ad2ant1 1080 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ)
30 resqcl 12878 . . . . . . . . . . . 12 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℝ)
31303ad2ant3 1082 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
3229, 31resubcld 10409 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
3332adantr 481 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
34 absresq 13983 . . . . . . . . . . . . 13 (𝑡 ∈ ℝ → ((abs‘𝑡)↑2) = (𝑡↑2))
35343ad2ant3 1082 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2))
3635breq1d 4628 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) ≤ (𝑅↑2) ↔ (𝑡↑2) ≤ (𝑅↑2)))
37 recn 9977 . . . . . . . . . . . . . 14 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
3837abscld 14116 . . . . . . . . . . . . 13 (𝑡 ∈ ℝ → (abs‘𝑡) ∈ ℝ)
39383ad2ant3 1082 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (abs‘𝑡) ∈ ℝ)
40 simp1 1059 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 𝑅 ∈ ℝ)
4137absge0d 14124 . . . . . . . . . . . . 13 (𝑡 ∈ ℝ → 0 ≤ (abs‘𝑡))
42413ad2ant3 1082 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 0 ≤ (abs‘𝑡))
43 simp2 1060 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 0 ≤ 𝑅)
4439, 40, 42, 43le2sqd 12991 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
4529, 31subge0d 10568 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (𝑡↑2) ≤ (𝑅↑2)))
4636, 44, 453bitr4d 300 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ 0 ≤ ((𝑅↑2) − (𝑡↑2))))
4746biimpa 501 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))
4833, 47resqrtcld 14097 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
4948renegcld 10408 . . . . . . 7 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
5049rexrd 10040 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ*)
5148rexrd 10040 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ*)
52 iccval 12163 . . . . . 6 ((-(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ* ∧ (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ*) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) = {𝑢 ∈ ℝ* ∣ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))})
5350, 51, 52syl2anc 692 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) = {𝑢 ∈ ℝ* ∣ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))})
54 iftrue 4069 . . . . . 6 ((abs‘𝑡) ≤ 𝑅 → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) = (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))
5554adantl 482 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) = (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))
56 absresq 13983 . . . . . . . . . . . 12 (𝑢 ∈ ℝ → ((abs‘𝑢)↑2) = (𝑢↑2))
5732recnd 10019 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
5857adantr 481 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
5958sqsqrtd 14119 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((√‘((𝑅↑2) − (𝑡↑2)))↑2) = ((𝑅↑2) − (𝑡↑2)))
6056, 59breqan12rd 4635 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → (((abs‘𝑢)↑2) ≤ ((√‘((𝑅↑2) − (𝑡↑2)))↑2) ↔ (𝑢↑2) ≤ ((𝑅↑2) − (𝑡↑2))))
61 recn 9977 . . . . . . . . . . . . . 14 (𝑢 ∈ ℝ → 𝑢 ∈ ℂ)
6261abscld 14116 . . . . . . . . . . . . 13 (𝑢 ∈ ℝ → (abs‘𝑢) ∈ ℝ)
6362adantl 482 . . . . . . . . . . . 12 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → (abs‘𝑢) ∈ ℝ)
6448adantr 481 . . . . . . . . . . . 12 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
6561absge0d 14124 . . . . . . . . . . . . 13 (𝑢 ∈ ℝ → 0 ≤ (abs‘𝑢))
6665adantl 482 . . . . . . . . . . . 12 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → 0 ≤ (abs‘𝑢))
6733, 47sqrtge0d 14100 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2))))
6867adantr 481 . . . . . . . . . . . 12 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2))))
6963, 64, 66, 68le2sqd 12991 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → ((abs‘𝑢) ≤ (√‘((𝑅↑2) − (𝑡↑2))) ↔ ((abs‘𝑢)↑2) ≤ ((√‘((𝑅↑2) − (𝑡↑2)))↑2)))
7031adantr 481 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑢 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
71 resqcl 12878 . . . . . . . . . . . . . 14 (𝑢 ∈ ℝ → (𝑢↑2) ∈ ℝ)
7271adantl 482 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑢 ∈ ℝ) → (𝑢↑2) ∈ ℝ)
7329adantr 481 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑢 ∈ ℝ) → (𝑅↑2) ∈ ℝ)
7470, 72, 73leaddsub2d 10580 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑢 ∈ ℝ) → (((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2) ↔ (𝑢↑2) ≤ ((𝑅↑2) − (𝑡↑2))))
7574adantlr 750 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → (((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2) ↔ (𝑢↑2) ≤ ((𝑅↑2) − (𝑡↑2))))
7660, 69, 753bitr4rd 301 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → (((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2) ↔ (abs‘𝑢) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
77 simpr 477 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → 𝑢 ∈ ℝ)
7877, 64absled 14110 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → ((abs‘𝑢) ≤ (√‘((𝑅↑2) − (𝑡↑2))) ↔ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))))
79 rexr 10036 . . . . . . . . . . . 12 (𝑢 ∈ ℝ → 𝑢 ∈ ℝ*)
8079adantl 482 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → 𝑢 ∈ ℝ*)
8180biantrurd 529 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → ((-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))) ↔ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))))
8276, 78, 813bitrd 294 . . . . . . . . 9 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → (((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2) ↔ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))))
8382pm5.32da 672 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) ↔ (𝑢 ∈ ℝ ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))))))
84 simprl 793 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → 𝑢 ∈ ℝ*)
8548adantr 481 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
86 mnfxr 10047 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
8786a1i 11 . . . . . . . . . . . 12 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -∞ ∈ ℝ*)
8849adantr 481 . . . . . . . . . . . . 13 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
8988rexrd 10040 . . . . . . . . . . . 12 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ*)
9049mnfltd 11909 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -∞ < -(√‘((𝑅↑2) − (𝑡↑2))))
9190adantr 481 . . . . . . . . . . . 12 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -∞ < -(√‘((𝑅↑2) − (𝑡↑2))))
92 simprrl 803 . . . . . . . . . . . 12 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢)
9387, 89, 84, 91, 92xrltletrd 11943 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -∞ < 𝑢)
94 simprrr 804 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))
95 xrre 11950 . . . . . . . . . . 11 (((𝑢 ∈ ℝ* ∧ (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) ∧ (-∞ < 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))) → 𝑢 ∈ ℝ)
9684, 85, 93, 94, 95syl22anc 1324 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → 𝑢 ∈ ℝ)
9796ex 450 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))) → 𝑢 ∈ ℝ))
9897pm4.71rd 666 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))) ↔ (𝑢 ∈ ℝ ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))))))
9983, 98bitr4d 271 . . . . . . 7 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) ↔ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))))
10099abbidv 2738 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = {𝑢 ∣ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))})
101 df-rab 2916 . . . . . 6 {𝑢 ∈ ℝ* ∣ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))} = {𝑢 ∣ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))}
102100, 101syl6eqr 2673 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = {𝑢 ∈ ℝ* ∣ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))})
10353, 55, 1023eqtr4rd 2666 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
10440, 39ltnled 10135 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅 < (abs‘𝑡) ↔ ¬ (abs‘𝑡) ≤ 𝑅))
105104biimprd 238 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (¬ (abs‘𝑡) ≤ 𝑅𝑅 < (abs‘𝑡)))
106105imdistani 725 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡)))
107 df-rab 2916 . . . . . . 7 {𝑢 ∈ ℝ ∣ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)} = {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))}
108293ad2ant1 1080 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑅↑2) ∈ ℝ)
109313ad2ant1 1080 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
110713ad2ant3 1082 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑢↑2) ∈ ℝ)
111109, 110readdcld 10020 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → ((𝑡↑2) + (𝑢↑2)) ∈ ℝ)
11240, 39, 43, 42lt2sqd 12990 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅 < (abs‘𝑡) ↔ (𝑅↑2) < ((abs‘𝑡)↑2)))
11335breq2d 4630 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑅↑2) < ((abs‘𝑡)↑2) ↔ (𝑅↑2) < (𝑡↑2)))
114112, 113bitrd 268 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅 < (abs‘𝑡) ↔ (𝑅↑2) < (𝑡↑2)))
115114biimpa 501 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡)) → (𝑅↑2) < (𝑡↑2))
1161153adant3 1079 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑅↑2) < (𝑡↑2))
117 sqge0 12887 . . . . . . . . . . . . . 14 (𝑢 ∈ ℝ → 0 ≤ (𝑢↑2))
1181173ad2ant3 1082 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → 0 ≤ (𝑢↑2))
119109, 110addge01d 10566 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (0 ≤ (𝑢↑2) ↔ (𝑡↑2) ≤ ((𝑡↑2) + (𝑢↑2))))
120118, 119mpbid 222 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑡↑2) ≤ ((𝑡↑2) + (𝑢↑2)))
121108, 109, 111, 116, 120ltletrd 10148 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑅↑2) < ((𝑡↑2) + (𝑢↑2)))
122108, 111ltnled 10135 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → ((𝑅↑2) < ((𝑡↑2) + (𝑢↑2)) ↔ ¬ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))
123121, 122mpbid 222 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → ¬ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))
1241233expa 1262 . . . . . . . . 9 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡)) ∧ 𝑢 ∈ ℝ) → ¬ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))
125124ralrimiva 2961 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡)) → ∀𝑢 ∈ ℝ ¬ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))
126 rabeq0 3936 . . . . . . . 8 ({𝑢 ∈ ℝ ∣ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)} = ∅ ↔ ∀𝑢 ∈ ℝ ¬ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))
127125, 126sylibr 224 . . . . . . 7 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡)) → {𝑢 ∈ ℝ ∣ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)} = ∅)
128107, 127syl5eqr 2669 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡)) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = ∅)
129106, 128syl 17 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = ∅)
130 iffalse 4072 . . . . . 6 (¬ (abs‘𝑡) ≤ 𝑅 → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) = ∅)
131130adantl 482 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) = ∅)
132129, 131eqtr4d 2658 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
133103, 132pm2.61dan 831 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
13427, 133eqtr3d 2657 . 2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → {𝑢 ∣ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))} = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
13524, 134syl5eq 2667 1 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  {cab 2607  ∀wral 2907  {crab 2911  Vcvv 3189  ∅c0 3896  ifcif 4063  {csn 4153  ⟨cop 4159   class class class wbr 4618  {copab 4677   “ cima 5082  ‘cfv 5852  (class class class)co 6610  ℂcc 9885  ℝcr 9886  0cc0 9887   + caddc 9890  -∞cmnf 10023  ℝ*cxr 10024   < clt 10025   ≤ cle 10026   − cmin 10217  -cneg 10218  2c2 11021  [,]cicc 12127  ↑cexp 12807  √csqrt 13914  abscabs 13915 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-sup 8299  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-z 11329  df-uz 11639  df-rp 11784  df-icc 12131  df-seq 12749  df-exp 12808  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917 This theorem is referenced by:  areacirc  33164
 Copyright terms: Public domain W3C validator