Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirclem5 Structured version   Visualization version   GIF version

Theorem areacirclem5 34990
Description: Finding the cross-section of a circle. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 22-Sep-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Hypothesis
Ref Expression
areacirc.1 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}
Assertion
Ref Expression
areacirclem5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
Distinct variable groups:   𝑥,𝑦,𝑡,𝑅   𝑡,𝑆
Allowed substitution hints:   𝑆(𝑥,𝑦)

Proof of Theorem areacirclem5
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 areacirc.1 . . . 4 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}
21imaeq1i 5929 . . 3 (𝑆 “ {𝑡}) = ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} “ {𝑡})
3 vex 3500 . . . 4 𝑡 ∈ V
4 imasng 5954 . . . 4 (𝑡 ∈ V → ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} “ {𝑡}) = {𝑢𝑡{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}𝑢})
53, 4ax-mp 5 . . 3 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} “ {𝑡}) = {𝑢𝑡{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}𝑢}
6 df-br 5070 . . . . 5 (𝑡{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}𝑢 ↔ ⟨𝑡, 𝑢⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))})
7 vex 3500 . . . . . 6 𝑢 ∈ V
8 eleq1w 2898 . . . . . . . 8 (𝑥 = 𝑡 → (𝑥 ∈ ℝ ↔ 𝑡 ∈ ℝ))
98anbi1d 631 . . . . . . 7 (𝑥 = 𝑡 → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (𝑡 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
10 oveq1 7166 . . . . . . . . 9 (𝑥 = 𝑡 → (𝑥↑2) = (𝑡↑2))
1110oveq1d 7174 . . . . . . . 8 (𝑥 = 𝑡 → ((𝑥↑2) + (𝑦↑2)) = ((𝑡↑2) + (𝑦↑2)))
1211breq1d 5079 . . . . . . 7 (𝑥 = 𝑡 → (((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2) ↔ ((𝑡↑2) + (𝑦↑2)) ≤ (𝑅↑2)))
139, 12anbi12d 632 . . . . . 6 (𝑥 = 𝑡 → (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2)) ↔ ((𝑡 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑡↑2) + (𝑦↑2)) ≤ (𝑅↑2))))
14 eleq1w 2898 . . . . . . . 8 (𝑦 = 𝑢 → (𝑦 ∈ ℝ ↔ 𝑢 ∈ ℝ))
1514anbi2d 630 . . . . . . 7 (𝑦 = 𝑢 → ((𝑡 ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)))
16 oveq1 7166 . . . . . . . . 9 (𝑦 = 𝑢 → (𝑦↑2) = (𝑢↑2))
1716oveq2d 7175 . . . . . . . 8 (𝑦 = 𝑢 → ((𝑡↑2) + (𝑦↑2)) = ((𝑡↑2) + (𝑢↑2)))
1817breq1d 5079 . . . . . . 7 (𝑦 = 𝑢 → (((𝑡↑2) + (𝑦↑2)) ≤ (𝑅↑2) ↔ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))
1915, 18anbi12d 632 . . . . . 6 (𝑦 = 𝑢 → (((𝑡 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑡↑2) + (𝑦↑2)) ≤ (𝑅↑2)) ↔ ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))))
203, 7, 13, 19opelopab 5432 . . . . 5 (⟨𝑡, 𝑢⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} ↔ ((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))
21 anass 471 . . . . 5 (((𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ) ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) ↔ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))))
226, 20, 213bitri 299 . . . 4 (𝑡{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}𝑢 ↔ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))))
2322abbii 2889 . . 3 {𝑢𝑡{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))}𝑢} = {𝑢 ∣ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))}
242, 5, 233eqtri 2851 . 2 (𝑆 “ {𝑡}) = {𝑢 ∣ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))}
25 simp3 1134 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
2625biantrurd 535 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) ↔ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))))
2726abbidv 2888 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = {𝑢 ∣ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))})
28 resqcl 13493 . . . . . . . . . . . 12 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℝ)
29283ad2ant1 1129 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ)
30 resqcl 13493 . . . . . . . . . . . 12 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℝ)
31303ad2ant3 1131 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
3229, 31resubcld 11071 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
3332adantr 483 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
34 absresq 14665 . . . . . . . . . . . . 13 (𝑡 ∈ ℝ → ((abs‘𝑡)↑2) = (𝑡↑2))
35343ad2ant3 1131 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2))
3635breq1d 5079 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) ≤ (𝑅↑2) ↔ (𝑡↑2) ≤ (𝑅↑2)))
37 recn 10630 . . . . . . . . . . . . . 14 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
3837abscld 14799 . . . . . . . . . . . . 13 (𝑡 ∈ ℝ → (abs‘𝑡) ∈ ℝ)
39383ad2ant3 1131 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (abs‘𝑡) ∈ ℝ)
40 simp1 1132 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 𝑅 ∈ ℝ)
4137absge0d 14807 . . . . . . . . . . . . 13 (𝑡 ∈ ℝ → 0 ≤ (abs‘𝑡))
42413ad2ant3 1131 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 0 ≤ (abs‘𝑡))
43 simp2 1133 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 0 ≤ 𝑅)
4439, 40, 42, 43le2sqd 13623 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
4529, 31subge0d 11233 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (𝑡↑2) ≤ (𝑅↑2)))
4636, 44, 453bitr4d 313 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ 0 ≤ ((𝑅↑2) − (𝑡↑2))))
4746biimpa 479 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))
4833, 47resqrtcld 14780 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
4948renegcld 11070 . . . . . . 7 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
5049rexrd 10694 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ*)
5148rexrd 10694 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ*)
52 iccval 12780 . . . . . 6 ((-(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ* ∧ (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ*) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) = {𝑢 ∈ ℝ* ∣ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))})
5350, 51, 52syl2anc 586 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) = {𝑢 ∈ ℝ* ∣ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))})
54 iftrue 4476 . . . . . 6 ((abs‘𝑡) ≤ 𝑅 → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) = (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))
5554adantl 484 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) = (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))
56 absresq 14665 . . . . . . . . . . . 12 (𝑢 ∈ ℝ → ((abs‘𝑢)↑2) = (𝑢↑2))
5732recnd 10672 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
5857adantr 483 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
5958sqsqrtd 14802 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((√‘((𝑅↑2) − (𝑡↑2)))↑2) = ((𝑅↑2) − (𝑡↑2)))
6056, 59breqan12rd 5086 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → (((abs‘𝑢)↑2) ≤ ((√‘((𝑅↑2) − (𝑡↑2)))↑2) ↔ (𝑢↑2) ≤ ((𝑅↑2) − (𝑡↑2))))
61 recn 10630 . . . . . . . . . . . . . 14 (𝑢 ∈ ℝ → 𝑢 ∈ ℂ)
6261abscld 14799 . . . . . . . . . . . . 13 (𝑢 ∈ ℝ → (abs‘𝑢) ∈ ℝ)
6362adantl 484 . . . . . . . . . . . 12 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → (abs‘𝑢) ∈ ℝ)
6448adantr 483 . . . . . . . . . . . 12 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
6561absge0d 14807 . . . . . . . . . . . . 13 (𝑢 ∈ ℝ → 0 ≤ (abs‘𝑢))
6665adantl 484 . . . . . . . . . . . 12 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → 0 ≤ (abs‘𝑢))
6733, 47sqrtge0d 14783 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2))))
6867adantr 483 . . . . . . . . . . . 12 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2))))
6963, 64, 66, 68le2sqd 13623 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → ((abs‘𝑢) ≤ (√‘((𝑅↑2) − (𝑡↑2))) ↔ ((abs‘𝑢)↑2) ≤ ((√‘((𝑅↑2) − (𝑡↑2)))↑2)))
7031adantr 483 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑢 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
71 resqcl 13493 . . . . . . . . . . . . . 14 (𝑢 ∈ ℝ → (𝑢↑2) ∈ ℝ)
7271adantl 484 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑢 ∈ ℝ) → (𝑢↑2) ∈ ℝ)
7329adantr 483 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑢 ∈ ℝ) → (𝑅↑2) ∈ ℝ)
7470, 72, 73leaddsub2d 11245 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑢 ∈ ℝ) → (((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2) ↔ (𝑢↑2) ≤ ((𝑅↑2) − (𝑡↑2))))
7574adantlr 713 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → (((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2) ↔ (𝑢↑2) ≤ ((𝑅↑2) − (𝑡↑2))))
7660, 69, 753bitr4rd 314 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → (((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2) ↔ (abs‘𝑢) ≤ (√‘((𝑅↑2) − (𝑡↑2)))))
77 simpr 487 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → 𝑢 ∈ ℝ)
7877, 64absled 14793 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → ((abs‘𝑢) ≤ (√‘((𝑅↑2) − (𝑡↑2))) ↔ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))))
79 rexr 10690 . . . . . . . . . . . 12 (𝑢 ∈ ℝ → 𝑢 ∈ ℝ*)
8079adantl 484 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → 𝑢 ∈ ℝ*)
8180biantrurd 535 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → ((-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))) ↔ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))))
8276, 78, 813bitrd 307 . . . . . . . . 9 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ 𝑢 ∈ ℝ) → (((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2) ↔ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))))
8382pm5.32da 581 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) ↔ (𝑢 ∈ ℝ ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))))))
84 simprl 769 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → 𝑢 ∈ ℝ*)
8548adantr 483 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
86 mnfxr 10701 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
8786a1i 11 . . . . . . . . . . . 12 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -∞ ∈ ℝ*)
8849adantr 483 . . . . . . . . . . . . 13 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ)
8988rexrd 10694 . . . . . . . . . . . 12 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ*)
9049mnfltd 12522 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -∞ < -(√‘((𝑅↑2) − (𝑡↑2))))
9190adantr 483 . . . . . . . . . . . 12 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -∞ < -(√‘((𝑅↑2) − (𝑡↑2))))
92 simprrl 779 . . . . . . . . . . . 12 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢)
9387, 89, 84, 91, 92xrltletrd 12557 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → -∞ < 𝑢)
94 simprrr 780 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → 𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))
95 xrre 12565 . . . . . . . . . . 11 (((𝑢 ∈ ℝ* ∧ (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) ∧ (-∞ < 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))) → 𝑢 ∈ ℝ)
9684, 85, 93, 94, 95syl22anc 836 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))) → 𝑢 ∈ ℝ)
9796ex 415 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))) → 𝑢 ∈ ℝ))
9897pm4.71rd 565 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))) ↔ (𝑢 ∈ ℝ ∧ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))))))
9983, 98bitr4d 284 . . . . . . 7 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)) ↔ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))))
10099abbidv 2888 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = {𝑢 ∣ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))})
101 df-rab 3150 . . . . . 6 {𝑢 ∈ ℝ* ∣ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))} = {𝑢 ∣ (𝑢 ∈ ℝ* ∧ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2)))))}
102100, 101syl6eqr 2877 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = {𝑢 ∈ ℝ* ∣ (-(√‘((𝑅↑2) − (𝑡↑2))) ≤ 𝑢𝑢 ≤ (√‘((𝑅↑2) − (𝑡↑2))))})
10353, 55, 1023eqtr4rd 2870 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
10440, 39ltnled 10790 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅 < (abs‘𝑡) ↔ ¬ (abs‘𝑡) ≤ 𝑅))
105104biimprd 250 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (¬ (abs‘𝑡) ≤ 𝑅𝑅 < (abs‘𝑡)))
106105imdistani 571 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡)))
107 df-rab 3150 . . . . . . 7 {𝑢 ∈ ℝ ∣ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)} = {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))}
108293ad2ant1 1129 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑅↑2) ∈ ℝ)
109313ad2ant1 1129 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
110713ad2ant3 1131 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑢↑2) ∈ ℝ)
111109, 110readdcld 10673 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → ((𝑡↑2) + (𝑢↑2)) ∈ ℝ)
11240, 39, 43, 42lt2sqd 13622 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅 < (abs‘𝑡) ↔ (𝑅↑2) < ((abs‘𝑡)↑2)))
11335breq2d 5081 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((𝑅↑2) < ((abs‘𝑡)↑2) ↔ (𝑅↑2) < (𝑡↑2)))
114112, 113bitrd 281 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅 < (abs‘𝑡) ↔ (𝑅↑2) < (𝑡↑2)))
115114biimpa 479 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡)) → (𝑅↑2) < (𝑡↑2))
1161153adant3 1128 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑅↑2) < (𝑡↑2))
117 sqge0 13504 . . . . . . . . . . . . . 14 (𝑢 ∈ ℝ → 0 ≤ (𝑢↑2))
1181173ad2ant3 1131 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → 0 ≤ (𝑢↑2))
119109, 110addge01d 11231 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (0 ≤ (𝑢↑2) ↔ (𝑡↑2) ≤ ((𝑡↑2) + (𝑢↑2))))
120118, 119mpbid 234 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑡↑2) ≤ ((𝑡↑2) + (𝑢↑2)))
121108, 109, 111, 116, 120ltletrd 10803 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → (𝑅↑2) < ((𝑡↑2) + (𝑢↑2)))
122108, 111ltnled 10790 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → ((𝑅↑2) < ((𝑡↑2) + (𝑢↑2)) ↔ ¬ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))
123121, 122mpbid 234 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡) ∧ 𝑢 ∈ ℝ) → ¬ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))
1241233expa 1114 . . . . . . . . 9 ((((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡)) ∧ 𝑢 ∈ ℝ) → ¬ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))
125124ralrimiva 3185 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡)) → ∀𝑢 ∈ ℝ ¬ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))
126 rabeq0 4341 . . . . . . . 8 ({𝑢 ∈ ℝ ∣ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)} = ∅ ↔ ∀𝑢 ∈ ℝ ¬ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))
127125, 126sylibr 236 . . . . . . 7 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡)) → {𝑢 ∈ ℝ ∣ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)} = ∅)
128107, 127syl5eqr 2873 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ 𝑅 < (abs‘𝑡)) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = ∅)
129106, 128syl 17 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = ∅)
130 iffalse 4479 . . . . . 6 (¬ (abs‘𝑡) ≤ 𝑅 → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) = ∅)
131130adantl 484 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) = ∅)
132129, 131eqtr4d 2862 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
133103, 132pm2.61dan 811 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → {𝑢 ∣ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2))} = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
13427, 133eqtr3d 2861 . 2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → {𝑢 ∣ (𝑡 ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ ((𝑡↑2) + (𝑢↑2)) ≤ (𝑅↑2)))} = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
13524, 134syl5eq 2871 1 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  {cab 2802  wral 3141  {crab 3145  Vcvv 3497  c0 4294  ifcif 4470  {csn 4570  cop 4576   class class class wbr 5069  {copab 5131  cima 5561  cfv 6358  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540   + caddc 10543  -∞cmnf 10676  *cxr 10677   < clt 10678  cle 10679  cmin 10873  -cneg 10874  2c2 11695  [,]cicc 12744  cexp 13432  csqrt 14595  abscabs 14596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-icc 12748  df-seq 13373  df-exp 13433  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598
This theorem is referenced by:  areacirc  34991
  Copyright terms: Public domain W3C validator