Users' Mathboxes Mathbox for Jon Pennant < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areaquad Structured version   Visualization version   GIF version

Theorem areaquad 39830
Description: The area of a quadrilateral with two sides which are parallel to the y-axis in (ℝ × ℝ) is its width multiplied by the average height of its higher edge minus the average height of its lower edge. Co-author TA. (Contributed by Jon Pennant, 31-May-2019.)
Hypotheses
Ref Expression
areaquad.1 𝐴 ∈ ℝ
areaquad.2 𝐵 ∈ ℝ
areaquad.3 𝐶 ∈ ℝ
areaquad.4 𝐷 ∈ ℝ
areaquad.5 𝐸 ∈ ℝ
areaquad.6 𝐹 ∈ ℝ
areaquad.7 𝐴 < 𝐵
areaquad.8 𝐶𝐸
areaquad.9 𝐷𝐹
areaquad.10 𝑈 = (𝐶 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶)))
areaquad.11 𝑉 = (𝐸 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸)))
areaquad.12 𝑆 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝑈[,]𝑉))}
Assertion
Ref Expression
areaquad (area‘𝑆) = ((((𝐹 + 𝐸) / 2) − ((𝐷 + 𝐶) / 2)) · (𝐵𝐴))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝑥,𝑆   𝑦,𝑈   𝑦,𝑉
Allowed substitution hints:   𝐶(𝑦)   𝐷(𝑦)   𝑆(𝑦)   𝑈(𝑥)   𝐸(𝑦)   𝐹(𝑦)   𝑉(𝑥)

Proof of Theorem areaquad
StepHypRef Expression
1 areaquad.1 . . . . . . . . . 10 𝐴 ∈ ℝ
2 areaquad.2 . . . . . . . . . 10 𝐵 ∈ ℝ
3 iccssre 12821 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
41, 2, 3mp2an 690 . . . . . . . . 9 (𝐴[,]𝐵) ⊆ ℝ
54sseli 3965 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ)
65adantr 483 . . . . . . 7 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝑈[,]𝑉)) → 𝑥 ∈ ℝ)
7 areaquad.3 . . . . . . . . . . . . . . . 16 𝐶 ∈ ℝ
87recni 10657 . . . . . . . . . . . . . . 15 𝐶 ∈ ℂ
98a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝐶 ∈ ℂ)
10 resubcl 10952 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥𝐴) ∈ ℝ)
111, 10mpan2 689 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → (𝑥𝐴) ∈ ℝ)
122, 1resubcli 10950 . . . . . . . . . . . . . . . . . 18 (𝐵𝐴) ∈ ℝ
1312a1i 11 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → (𝐵𝐴) ∈ ℝ)
142recni 10657 . . . . . . . . . . . . . . . . . . . . 21 𝐵 ∈ ℂ
1514a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℝ → 𝐵 ∈ ℂ)
16 recn 10629 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
17 areaquad.7 . . . . . . . . . . . . . . . . . . . . . 22 𝐴 < 𝐵
181, 17gtneii 10754 . . . . . . . . . . . . . . . . . . . . 21 𝐵𝐴
1918a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℝ → 𝐵𝐴)
2015, 16, 19subne0d 11008 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℝ → (𝐵𝐴) ≠ 0)
211, 20ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝐵𝐴) ≠ 0
2221a1i 11 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → (𝐵𝐴) ≠ 0)
2311, 13, 22redivcld 11470 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → ((𝑥𝐴) / (𝐵𝐴)) ∈ ℝ)
2423recnd 10671 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → ((𝑥𝐴) / (𝐵𝐴)) ∈ ℂ)
25 areaquad.4 . . . . . . . . . . . . . . . . 17 𝐷 ∈ ℝ
2625recni 10657 . . . . . . . . . . . . . . . 16 𝐷 ∈ ℂ
2726a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → 𝐷 ∈ ℂ)
2824, 27mulcld 10663 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (((𝑥𝐴) / (𝐵𝐴)) · 𝐷) ∈ ℂ)
2924, 9mulcld 10663 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (((𝑥𝐴) / (𝐵𝐴)) · 𝐶) ∈ ℂ)
309, 28, 29addsub12d 11022 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (𝐶 + ((((𝑥𝐴) / (𝐵𝐴)) · 𝐷) − (((𝑥𝐴) / (𝐵𝐴)) · 𝐶))) = ((((𝑥𝐴) / (𝐵𝐴)) · 𝐷) + (𝐶 − (((𝑥𝐴) / (𝐵𝐴)) · 𝐶))))
31 areaquad.10 . . . . . . . . . . . . . 14 𝑈 = (𝐶 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶)))
3224, 27, 9subdid 11098 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶)) = ((((𝑥𝐴) / (𝐵𝐴)) · 𝐷) − (((𝑥𝐴) / (𝐵𝐴)) · 𝐶)))
3332oveq2d 7174 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (𝐶 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶))) = (𝐶 + ((((𝑥𝐴) / (𝐵𝐴)) · 𝐷) − (((𝑥𝐴) / (𝐵𝐴)) · 𝐶))))
3431, 33syl5eq 2870 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝑈 = (𝐶 + ((((𝑥𝐴) / (𝐵𝐴)) · 𝐷) − (((𝑥𝐴) / (𝐵𝐴)) · 𝐶))))
35 1cnd 10638 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → 1 ∈ ℂ)
3635, 24, 9subdird 11099 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → ((1 − ((𝑥𝐴) / (𝐵𝐴))) · 𝐶) = ((1 · 𝐶) − (((𝑥𝐴) / (𝐵𝐴)) · 𝐶)))
378mulid2i 10648 . . . . . . . . . . . . . . . 16 (1 · 𝐶) = 𝐶
3837oveq1i 7168 . . . . . . . . . . . . . . 15 ((1 · 𝐶) − (((𝑥𝐴) / (𝐵𝐴)) · 𝐶)) = (𝐶 − (((𝑥𝐴) / (𝐵𝐴)) · 𝐶))
3936, 38syl6eq 2874 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → ((1 − ((𝑥𝐴) / (𝐵𝐴))) · 𝐶) = (𝐶 − (((𝑥𝐴) / (𝐵𝐴)) · 𝐶)))
4039oveq2d 7174 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ((((𝑥𝐴) / (𝐵𝐴)) · 𝐷) + ((1 − ((𝑥𝐴) / (𝐵𝐴))) · 𝐶)) = ((((𝑥𝐴) / (𝐵𝐴)) · 𝐷) + (𝐶 − (((𝑥𝐴) / (𝐵𝐴)) · 𝐶))))
4130, 34, 403eqtr4d 2868 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑈 = ((((𝑥𝐴) / (𝐵𝐴)) · 𝐷) + ((1 − ((𝑥𝐴) / (𝐵𝐴))) · 𝐶)))
42 1red 10644 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → 1 ∈ ℝ)
4342, 23resubcld 11070 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (1 − ((𝑥𝐴) / (𝐵𝐴))) ∈ ℝ)
4443recnd 10671 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (1 − ((𝑥𝐴) / (𝐵𝐴))) ∈ ℂ)
4544, 9mulcld 10663 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ((1 − ((𝑥𝐴) / (𝐵𝐴))) · 𝐶) ∈ ℂ)
4628, 45addcomd 10844 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((((𝑥𝐴) / (𝐵𝐴)) · 𝐷) + ((1 − ((𝑥𝐴) / (𝐵𝐴))) · 𝐶)) = (((1 − ((𝑥𝐴) / (𝐵𝐴))) · 𝐶) + (((𝑥𝐴) / (𝐵𝐴)) · 𝐷)))
4744, 9mulcomd 10664 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ((1 − ((𝑥𝐴) / (𝐵𝐴))) · 𝐶) = (𝐶 · (1 − ((𝑥𝐴) / (𝐵𝐴)))))
4824, 27mulcomd 10664 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (((𝑥𝐴) / (𝐵𝐴)) · 𝐷) = (𝐷 · ((𝑥𝐴) / (𝐵𝐴))))
4947, 48oveq12d 7176 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (((1 − ((𝑥𝐴) / (𝐵𝐴))) · 𝐶) + (((𝑥𝐴) / (𝐵𝐴)) · 𝐷)) = ((𝐶 · (1 − ((𝑥𝐴) / (𝐵𝐴)))) + (𝐷 · ((𝑥𝐴) / (𝐵𝐴)))))
5041, 46, 493eqtrd 2862 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑈 = ((𝐶 · (1 − ((𝑥𝐴) / (𝐵𝐴)))) + (𝐷 · ((𝑥𝐴) / (𝐵𝐴)))))
517a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝐶 ∈ ℝ)
5251, 43remulcld 10673 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝐶 · (1 − ((𝑥𝐴) / (𝐵𝐴)))) ∈ ℝ)
5325a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝐷 ∈ ℝ)
5453, 23remulcld 10673 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝐷 · ((𝑥𝐴) / (𝐵𝐴))) ∈ ℝ)
5552, 54readdcld 10672 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝐶 · (1 − ((𝑥𝐴) / (𝐵𝐴)))) + (𝐷 · ((𝑥𝐴) / (𝐵𝐴)))) ∈ ℝ)
5650, 55eqeltrd 2915 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑈 ∈ ℝ)
57 areaquad.5 . . . . . . . . . . . . . . . 16 𝐸 ∈ ℝ
5857recni 10657 . . . . . . . . . . . . . . 15 𝐸 ∈ ℂ
5958a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝐸 ∈ ℂ)
60 areaquad.6 . . . . . . . . . . . . . . . . 17 𝐹 ∈ ℝ
6160recni 10657 . . . . . . . . . . . . . . . 16 𝐹 ∈ ℂ
6261a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → 𝐹 ∈ ℂ)
6324, 62mulcld 10663 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (((𝑥𝐴) / (𝐵𝐴)) · 𝐹) ∈ ℂ)
6424, 59mulcld 10663 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (((𝑥𝐴) / (𝐵𝐴)) · 𝐸) ∈ ℂ)
6559, 63, 64addsub12d 11022 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (𝐸 + ((((𝑥𝐴) / (𝐵𝐴)) · 𝐹) − (((𝑥𝐴) / (𝐵𝐴)) · 𝐸))) = ((((𝑥𝐴) / (𝐵𝐴)) · 𝐹) + (𝐸 − (((𝑥𝐴) / (𝐵𝐴)) · 𝐸))))
66 areaquad.11 . . . . . . . . . . . . . 14 𝑉 = (𝐸 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸)))
6724, 62, 59subdid 11098 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸)) = ((((𝑥𝐴) / (𝐵𝐴)) · 𝐹) − (((𝑥𝐴) / (𝐵𝐴)) · 𝐸)))
6867oveq2d 7174 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (𝐸 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸))) = (𝐸 + ((((𝑥𝐴) / (𝐵𝐴)) · 𝐹) − (((𝑥𝐴) / (𝐵𝐴)) · 𝐸))))
6966, 68syl5eq 2870 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝑉 = (𝐸 + ((((𝑥𝐴) / (𝐵𝐴)) · 𝐹) − (((𝑥𝐴) / (𝐵𝐴)) · 𝐸))))
7035, 24, 59subdird 11099 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → ((1 − ((𝑥𝐴) / (𝐵𝐴))) · 𝐸) = ((1 · 𝐸) − (((𝑥𝐴) / (𝐵𝐴)) · 𝐸)))
7158mulid2i 10648 . . . . . . . . . . . . . . . 16 (1 · 𝐸) = 𝐸
7271oveq1i 7168 . . . . . . . . . . . . . . 15 ((1 · 𝐸) − (((𝑥𝐴) / (𝐵𝐴)) · 𝐸)) = (𝐸 − (((𝑥𝐴) / (𝐵𝐴)) · 𝐸))
7370, 72syl6eq 2874 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → ((1 − ((𝑥𝐴) / (𝐵𝐴))) · 𝐸) = (𝐸 − (((𝑥𝐴) / (𝐵𝐴)) · 𝐸)))
7473oveq2d 7174 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ((((𝑥𝐴) / (𝐵𝐴)) · 𝐹) + ((1 − ((𝑥𝐴) / (𝐵𝐴))) · 𝐸)) = ((((𝑥𝐴) / (𝐵𝐴)) · 𝐹) + (𝐸 − (((𝑥𝐴) / (𝐵𝐴)) · 𝐸))))
7565, 69, 743eqtr4d 2868 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑉 = ((((𝑥𝐴) / (𝐵𝐴)) · 𝐹) + ((1 − ((𝑥𝐴) / (𝐵𝐴))) · 𝐸)))
7644, 59mulcld 10663 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ((1 − ((𝑥𝐴) / (𝐵𝐴))) · 𝐸) ∈ ℂ)
7763, 76addcomd 10844 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((((𝑥𝐴) / (𝐵𝐴)) · 𝐹) + ((1 − ((𝑥𝐴) / (𝐵𝐴))) · 𝐸)) = (((1 − ((𝑥𝐴) / (𝐵𝐴))) · 𝐸) + (((𝑥𝐴) / (𝐵𝐴)) · 𝐹)))
7844, 59mulcomd 10664 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ((1 − ((𝑥𝐴) / (𝐵𝐴))) · 𝐸) = (𝐸 · (1 − ((𝑥𝐴) / (𝐵𝐴)))))
7924, 62mulcomd 10664 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (((𝑥𝐴) / (𝐵𝐴)) · 𝐹) = (𝐹 · ((𝑥𝐴) / (𝐵𝐴))))
8078, 79oveq12d 7176 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (((1 − ((𝑥𝐴) / (𝐵𝐴))) · 𝐸) + (((𝑥𝐴) / (𝐵𝐴)) · 𝐹)) = ((𝐸 · (1 − ((𝑥𝐴) / (𝐵𝐴)))) + (𝐹 · ((𝑥𝐴) / (𝐵𝐴)))))
8175, 77, 803eqtrd 2862 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑉 = ((𝐸 · (1 − ((𝑥𝐴) / (𝐵𝐴)))) + (𝐹 · ((𝑥𝐴) / (𝐵𝐴)))))
8257a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝐸 ∈ ℝ)
8382, 43remulcld 10673 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝐸 · (1 − ((𝑥𝐴) / (𝐵𝐴)))) ∈ ℝ)
8460a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝐹 ∈ ℝ)
8584, 23remulcld 10673 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝐹 · ((𝑥𝐴) / (𝐵𝐴))) ∈ ℝ)
8683, 85readdcld 10672 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝐸 · (1 − ((𝑥𝐴) / (𝐵𝐴)))) + (𝐹 · ((𝑥𝐴) / (𝐵𝐴)))) ∈ ℝ)
8781, 86eqeltrd 2915 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑉 ∈ ℝ)
88 iccssre 12821 . . . . . . . . . 10 ((𝑈 ∈ ℝ ∧ 𝑉 ∈ ℝ) → (𝑈[,]𝑉) ⊆ ℝ)
8956, 87, 88syl2anc 586 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑈[,]𝑉) ⊆ ℝ)
905, 89syl 17 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) → (𝑈[,]𝑉) ⊆ ℝ)
9190sselda 3969 . . . . . . 7 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝑈[,]𝑉)) → 𝑦 ∈ ℝ)
926, 91jca 514 . . . . . 6 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝑈[,]𝑉)) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))
9392ssopab2i 5439 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝑈[,]𝑉))} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)}
94 areaquad.12 . . . . 5 𝑆 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝑈[,]𝑉))}
95 df-xp 5563 . . . . 5 (ℝ × ℝ) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)}
9693, 94, 953sstr4i 4012 . . . 4 𝑆 ⊆ (ℝ × ℝ)
97 iftrue 4475 . . . . . . . . . 10 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝑉𝑈), 0) = (𝑉𝑈))
98 nfv 1915 . . . . . . . . . . . . 13 𝑦 𝑥 ∈ (𝐴[,]𝐵)
99 nfopab2 5138 . . . . . . . . . . . . . . 15 𝑦{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝑈[,]𝑉))}
10094, 99nfcxfr 2977 . . . . . . . . . . . . . 14 𝑦𝑆
101 nfcv 2979 . . . . . . . . . . . . . 14 𝑦{𝑥}
102100, 101nfima 5939 . . . . . . . . . . . . 13 𝑦(𝑆 “ {𝑥})
103 nfcv 2979 . . . . . . . . . . . . 13 𝑦(𝑈[,]𝑉)
104 vex 3499 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
105 vex 3499 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
106104, 105elimasn 5956 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝑆 “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑆)
10794eleq2i 2906 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ 𝑆 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝑈[,]𝑉))})
108 opabidw 5414 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝑈[,]𝑉))} ↔ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝑈[,]𝑉)))
109106, 107, 1083bitri 299 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑆 “ {𝑥}) ↔ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝑈[,]𝑉)))
110109baib 538 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴[,]𝐵) → (𝑦 ∈ (𝑆 “ {𝑥}) ↔ 𝑦 ∈ (𝑈[,]𝑉)))
11198, 102, 103, 110eqrd 3988 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴[,]𝐵) → (𝑆 “ {𝑥}) = (𝑈[,]𝑉))
112111fveq2d 6676 . . . . . . . . . . 11 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = (vol‘(𝑈[,]𝑉)))
1135, 56syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴[,]𝐵) → 𝑈 ∈ ℝ)
1145, 87syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴[,]𝐵) → 𝑉 ∈ ℝ)
115 iccmbl 24169 . . . . . . . . . . . . 13 ((𝑈 ∈ ℝ ∧ 𝑉 ∈ ℝ) → (𝑈[,]𝑉) ∈ dom vol)
116113, 114, 115syl2anc 586 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴[,]𝐵) → (𝑈[,]𝑉) ∈ dom vol)
117 mblvol 24133 . . . . . . . . . . . 12 ((𝑈[,]𝑉) ∈ dom vol → (vol‘(𝑈[,]𝑉)) = (vol*‘(𝑈[,]𝑉)))
118116, 117syl 17 . . . . . . . . . . 11 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑈[,]𝑉)) = (vol*‘(𝑈[,]𝑉)))
1195, 52syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴[,]𝐵) → (𝐶 · (1 − ((𝑥𝐴) / (𝐵𝐴)))) ∈ ℝ)
1205, 54syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴[,]𝐵) → (𝐷 · ((𝑥𝐴) / (𝐵𝐴))) ∈ ℝ)
1215, 83syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴[,]𝐵) → (𝐸 · (1 − ((𝑥𝐴) / (𝐵𝐴)))) ∈ ℝ)
1225, 85syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴[,]𝐵) → (𝐹 · ((𝑥𝐴) / (𝐵𝐴))) ∈ ℝ)
1237a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴[,]𝐵) → 𝐶 ∈ ℝ)
12457a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴[,]𝐵) → 𝐸 ∈ ℝ)
1255, 43syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴[,]𝐵) → (1 − ((𝑥𝐴) / (𝐵𝐴))) ∈ ℝ)
1265, 23syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴[,]𝐵) → ((𝑥𝐴) / (𝐵𝐴)) ∈ ℝ)
127126recnd 10671 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴[,]𝐵) → ((𝑥𝐴) / (𝐵𝐴)) ∈ ℂ)
128127subidd 10987 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴[,]𝐵) → (((𝑥𝐴) / (𝐵𝐴)) − ((𝑥𝐴) / (𝐵𝐴))) = 0)
129 1red 10644 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴[,]𝐵) → 1 ∈ ℝ)
1302a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝐴[,]𝐵) → 𝐵 ∈ ℝ)
1311a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝐴[,]𝐵) → 𝐴 ∈ ℝ)
1321rexri 10701 . . . . . . . . . . . . . . . . . . . . 21 𝐴 ∈ ℝ*
1332rexri 10701 . . . . . . . . . . . . . . . . . . . . 21 𝐵 ∈ ℝ*
134 iccleub 12795 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
135132, 133, 134mp3an12 1447 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝐴[,]𝐵) → 𝑥𝐵)
1365, 130, 131, 135lesub1dd 11258 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐴[,]𝐵) → (𝑥𝐴) ≤ (𝐵𝐴))
1375, 1, 10sylancl 588 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝐴[,]𝐵) → (𝑥𝐴) ∈ ℝ)
13812a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝐴[,]𝐵) → (𝐵𝐴) ∈ ℝ)
1391recni 10657 . . . . . . . . . . . . . . . . . . . . . 22 𝐴 ∈ ℂ
140139subidi 10959 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐴) = 0
141131, 130, 131ltsub1d 11251 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝐴[,]𝐵) → (𝐴 < 𝐵 ↔ (𝐴𝐴) < (𝐵𝐴)))
14217, 141mpbii 235 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐴[,]𝐵) → (𝐴𝐴) < (𝐵𝐴))
143140, 142eqbrtrrid 5104 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝐴[,]𝐵) → 0 < (𝐵𝐴))
144 lediv1 11507 . . . . . . . . . . . . . . . . . . . 20 (((𝑥𝐴) ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ ∧ ((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴))) → ((𝑥𝐴) ≤ (𝐵𝐴) ↔ ((𝑥𝐴) / (𝐵𝐴)) ≤ ((𝐵𝐴) / (𝐵𝐴))))
145137, 138, 138, 143, 144syl112anc 1370 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐴[,]𝐵) → ((𝑥𝐴) ≤ (𝐵𝐴) ↔ ((𝑥𝐴) / (𝐵𝐴)) ≤ ((𝐵𝐴) / (𝐵𝐴))))
146136, 145mpbid 234 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴[,]𝐵) → ((𝑥𝐴) / (𝐵𝐴)) ≤ ((𝐵𝐴) / (𝐵𝐴)))
14712recni 10657 . . . . . . . . . . . . . . . . . . 19 (𝐵𝐴) ∈ ℂ
148147, 21dividi 11375 . . . . . . . . . . . . . . . . . 18 ((𝐵𝐴) / (𝐵𝐴)) = 1
149146, 148breqtrdi 5109 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴[,]𝐵) → ((𝑥𝐴) / (𝐵𝐴)) ≤ 1)
150126, 129, 126, 149lesub1dd 11258 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴[,]𝐵) → (((𝑥𝐴) / (𝐵𝐴)) − ((𝑥𝐴) / (𝐵𝐴))) ≤ (1 − ((𝑥𝐴) / (𝐵𝐴))))
151128, 150eqbrtrrd 5092 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴[,]𝐵) → 0 ≤ (1 − ((𝑥𝐴) / (𝐵𝐴))))
152 areaquad.8 . . . . . . . . . . . . . . . 16 𝐶𝐸
153152a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴[,]𝐵) → 𝐶𝐸)
154123, 124, 125, 151, 153lemul1ad 11581 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴[,]𝐵) → (𝐶 · (1 − ((𝑥𝐴) / (𝐵𝐴)))) ≤ (𝐸 · (1 − ((𝑥𝐴) / (𝐵𝐴)))))
15525a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴[,]𝐵) → 𝐷 ∈ ℝ)
15660a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴[,]𝐵) → 𝐹 ∈ ℝ)
157138, 143elrpd 12431 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴[,]𝐵) → (𝐵𝐴) ∈ ℝ+)
158 iccgelb 12796 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
159132, 133, 158mp3an12 1447 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴[,]𝐵) → 𝐴𝑥)
160131, 5, 131, 159lesub1dd 11258 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴[,]𝐵) → (𝐴𝐴) ≤ (𝑥𝐴))
161140, 160eqbrtrrid 5104 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴[,]𝐵) → 0 ≤ (𝑥𝐴))
162137, 157, 161divge0d 12474 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴[,]𝐵) → 0 ≤ ((𝑥𝐴) / (𝐵𝐴)))
163 areaquad.9 . . . . . . . . . . . . . . . 16 𝐷𝐹
164163a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴[,]𝐵) → 𝐷𝐹)
165155, 156, 126, 162, 164lemul1ad 11581 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴[,]𝐵) → (𝐷 · ((𝑥𝐴) / (𝐵𝐴))) ≤ (𝐹 · ((𝑥𝐴) / (𝐵𝐴))))
166119, 120, 121, 122, 154, 165le2addd 11261 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴[,]𝐵) → ((𝐶 · (1 − ((𝑥𝐴) / (𝐵𝐴)))) + (𝐷 · ((𝑥𝐴) / (𝐵𝐴)))) ≤ ((𝐸 · (1 − ((𝑥𝐴) / (𝐵𝐴)))) + (𝐹 · ((𝑥𝐴) / (𝐵𝐴)))))
1675, 50syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴[,]𝐵) → 𝑈 = ((𝐶 · (1 − ((𝑥𝐴) / (𝐵𝐴)))) + (𝐷 · ((𝑥𝐴) / (𝐵𝐴)))))
1685, 81syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴[,]𝐵) → 𝑉 = ((𝐸 · (1 − ((𝑥𝐴) / (𝐵𝐴)))) + (𝐹 · ((𝑥𝐴) / (𝐵𝐴)))))
169166, 167, 1683brtr4d 5100 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴[,]𝐵) → 𝑈𝑉)
170 ovolicc 24126 . . . . . . . . . . . 12 ((𝑈 ∈ ℝ ∧ 𝑉 ∈ ℝ ∧ 𝑈𝑉) → (vol*‘(𝑈[,]𝑉)) = (𝑉𝑈))
171113, 114, 169, 170syl3anc 1367 . . . . . . . . . . 11 (𝑥 ∈ (𝐴[,]𝐵) → (vol*‘(𝑈[,]𝑉)) = (𝑉𝑈))
172112, 118, 1713eqtrd 2862 . . . . . . . . . 10 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = (𝑉𝑈))
17397, 172eqtr4d 2861 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝑉𝑈), 0) = (vol‘(𝑆 “ {𝑥})))
174 iffalse 4478 . . . . . . . . . 10 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝑉𝑈), 0) = 0)
175 nfv 1915 . . . . . . . . . . . . 13 𝑦 ¬ 𝑥 ∈ (𝐴[,]𝐵)
176 nfcv 2979 . . . . . . . . . . . . 13 𝑦
177109simplbi 500 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑆 “ {𝑥}) → 𝑥 ∈ (𝐴[,]𝐵))
178 noel 4298 . . . . . . . . . . . . . . 15 ¬ 𝑦 ∈ ∅
179178pm2.21i 119 . . . . . . . . . . . . . 14 (𝑦 ∈ ∅ → 𝑥 ∈ (𝐴[,]𝐵))
180177, 179pm5.21ni 381 . . . . . . . . . . . . 13 𝑥 ∈ (𝐴[,]𝐵) → (𝑦 ∈ (𝑆 “ {𝑥}) ↔ 𝑦 ∈ ∅))
181175, 102, 176, 180eqrd 3988 . . . . . . . . . . . 12 𝑥 ∈ (𝐴[,]𝐵) → (𝑆 “ {𝑥}) = ∅)
182181fveq2d 6676 . . . . . . . . . . 11 𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = (vol‘∅))
183 0mbl 24142 . . . . . . . . . . . . 13 ∅ ∈ dom vol
184 mblvol 24133 . . . . . . . . . . . . 13 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
185183, 184ax-mp 5 . . . . . . . . . . . 12 (vol‘∅) = (vol*‘∅)
186 ovol0 24096 . . . . . . . . . . . 12 (vol*‘∅) = 0
187185, 186eqtri 2846 . . . . . . . . . . 11 (vol‘∅) = 0
188182, 187syl6eq 2874 . . . . . . . . . 10 𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = 0)
189174, 188eqtr4d 2861 . . . . . . . . 9 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝑉𝑈), 0) = (vol‘(𝑆 “ {𝑥})))
190173, 189pm2.61i 184 . . . . . . . 8 if(𝑥 ∈ (𝐴[,]𝐵), (𝑉𝑈), 0) = (vol‘(𝑆 “ {𝑥}))
191190eqcomi 2832 . . . . . . 7 (vol‘(𝑆 “ {𝑥})) = if(𝑥 ∈ (𝐴[,]𝐵), (𝑉𝑈), 0)
19287, 56resubcld 11070 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑉𝑈) ∈ ℝ)
193 0re 10645 . . . . . . . 8 0 ∈ ℝ
194 ifcl 4513 . . . . . . . 8 (((𝑉𝑈) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥 ∈ (𝐴[,]𝐵), (𝑉𝑈), 0) ∈ ℝ)
195192, 193, 194sylancl 588 . . . . . . 7 (𝑥 ∈ ℝ → if(𝑥 ∈ (𝐴[,]𝐵), (𝑉𝑈), 0) ∈ ℝ)
196191, 195eqeltrid 2919 . . . . . 6 (𝑥 ∈ ℝ → (vol‘(𝑆 “ {𝑥})) ∈ ℝ)
197 volf 24132 . . . . . . . 8 vol:dom vol⟶(0[,]+∞)
198 ffun 6519 . . . . . . . 8 (vol:dom vol⟶(0[,]+∞) → Fun vol)
199197, 198ax-mp 5 . . . . . . 7 Fun vol
200 iftrue 4475 . . . . . . . . . 10 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝑈[,]𝑉), ∅) = (𝑈[,]𝑉))
201111, 200eqtr4d 2861 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]𝐵) → (𝑆 “ {𝑥}) = if(𝑥 ∈ (𝐴[,]𝐵), (𝑈[,]𝑉), ∅))
202 iffalse 4478 . . . . . . . . . 10 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝑈[,]𝑉), ∅) = ∅)
203181, 202eqtr4d 2861 . . . . . . . . 9 𝑥 ∈ (𝐴[,]𝐵) → (𝑆 “ {𝑥}) = if(𝑥 ∈ (𝐴[,]𝐵), (𝑈[,]𝑉), ∅))
204201, 203pm2.61i 184 . . . . . . . 8 (𝑆 “ {𝑥}) = if(𝑥 ∈ (𝐴[,]𝐵), (𝑈[,]𝑉), ∅)
20556, 87, 115syl2anc 586 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑈[,]𝑉) ∈ dom vol)
206183a1i 11 . . . . . . . . 9 (𝑥 ∈ ℝ → ∅ ∈ dom vol)
207205, 206ifcld 4514 . . . . . . . 8 (𝑥 ∈ ℝ → if(𝑥 ∈ (𝐴[,]𝐵), (𝑈[,]𝑉), ∅) ∈ dom vol)
208204, 207eqeltrid 2919 . . . . . . 7 (𝑥 ∈ ℝ → (𝑆 “ {𝑥}) ∈ dom vol)
209 fvimacnv 6825 . . . . . . 7 ((Fun vol ∧ (𝑆 “ {𝑥}) ∈ dom vol) → ((vol‘(𝑆 “ {𝑥})) ∈ ℝ ↔ (𝑆 “ {𝑥}) ∈ (vol “ ℝ)))
210199, 208, 209sylancr 589 . . . . . 6 (𝑥 ∈ ℝ → ((vol‘(𝑆 “ {𝑥})) ∈ ℝ ↔ (𝑆 “ {𝑥}) ∈ (vol “ ℝ)))
211196, 210mpbid 234 . . . . 5 (𝑥 ∈ ℝ → (𝑆 “ {𝑥}) ∈ (vol “ ℝ))
212211rgen 3150 . . . 4 𝑥 ∈ ℝ (𝑆 “ {𝑥}) ∈ (vol “ ℝ)
2134a1i 11 . . . . . 6 (0 ∈ ℝ → (𝐴[,]𝐵) ⊆ ℝ)
214 rembl 24143 . . . . . . 7 ℝ ∈ dom vol
215214a1i 11 . . . . . 6 (0 ∈ ℝ → ℝ ∈ dom vol)
216114, 113resubcld 11070 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) → (𝑉𝑈) ∈ ℝ)
217172, 216eqeltrd 2915 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) ∈ ℝ)
218217adantl 484 . . . . . 6 ((0 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (vol‘(𝑆 “ {𝑥})) ∈ ℝ)
219 eldifn 4106 . . . . . . . 8 (𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
220219, 188syl 17 . . . . . . 7 (𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)) → (vol‘(𝑆 “ {𝑥})) = 0)
221220adantl 484 . . . . . 6 ((0 ∈ ℝ ∧ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))) → (vol‘(𝑆 “ {𝑥})) = 0)
222172mpteq2ia 5159 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ (vol‘(𝑆 “ {𝑥}))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑉𝑈))
223 eqid 2823 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
224223subcn 23476 . . . . . . . . . . . 12 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
225224a1i 11 . . . . . . . . . . 11 (⊤ → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
22666mpteq2i 5160 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑉) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐸 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸))))
227223addcn 23475 . . . . . . . . . . . . . 14 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
228227a1i 11 . . . . . . . . . . . . 13 (⊤ → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
229 ax-resscn 10596 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
2304, 229sstri 3978 . . . . . . . . . . . . . . 15 (𝐴[,]𝐵) ⊆ ℂ
231 ssid 3991 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
232 cncfmptc 23521 . . . . . . . . . . . . . . 15 ((𝐸 ∈ ℂ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℂ))
23358, 230, 231, 232mp3an 1457 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℂ)
234233a1i 11 . . . . . . . . . . . . 13 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℂ))
235230sseli 3965 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℂ)
236139a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴[,]𝐵) → 𝐴 ∈ ℂ)
237147a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴[,]𝐵) → (𝐵𝐴) ∈ ℂ)
23821a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴[,]𝐵) → (𝐵𝐴) ≠ 0)
239235, 236, 237, 238divsubdird 11457 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴[,]𝐵) → ((𝑥𝐴) / (𝐵𝐴)) = ((𝑥 / (𝐵𝐴)) − (𝐴 / (𝐵𝐴))))
240239adantl 484 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝑥𝐴) / (𝐵𝐴)) = ((𝑥 / (𝐵𝐴)) − (𝐴 / (𝐵𝐴))))
241240mpteq2dva 5163 . . . . . . . . . . . . . . 15 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑥𝐴) / (𝐵𝐴))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑥 / (𝐵𝐴)) − (𝐴 / (𝐵𝐴)))))
242 resmpt 5907 . . . . . . . . . . . . . . . . . . 19 ((𝐴[,]𝐵) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥 / (𝐵𝐴))) ↾ (𝐴[,]𝐵)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥 / (𝐵𝐴))))
243230, 242ax-mp 5 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℂ ↦ (𝑥 / (𝐵𝐴))) ↾ (𝐴[,]𝐵)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥 / (𝐵𝐴)))
244 eqid 2823 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ ↦ (𝑥 / (𝐵𝐴))) = (𝑥 ∈ ℂ ↦ (𝑥 / (𝐵𝐴)))
245244divccncf 23516 . . . . . . . . . . . . . . . . . . . 20 (((𝐵𝐴) ∈ ℂ ∧ (𝐵𝐴) ≠ 0) → (𝑥 ∈ ℂ ↦ (𝑥 / (𝐵𝐴))) ∈ (ℂ–cn→ℂ))
246147, 21, 245mp2an 690 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ ↦ (𝑥 / (𝐵𝐴))) ∈ (ℂ–cn→ℂ)
247 rescncf 23507 . . . . . . . . . . . . . . . . . . 19 ((𝐴[,]𝐵) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥 / (𝐵𝐴))) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥 / (𝐵𝐴))) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
248230, 246, 247mp2 9 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℂ ↦ (𝑥 / (𝐵𝐴))) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)
249243, 248eqeltrri 2912 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥 / (𝐵𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℂ)
250249a1i 11 . . . . . . . . . . . . . . . 16 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥 / (𝐵𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
251139, 147, 21divcli 11384 . . . . . . . . . . . . . . . . . 18 (𝐴 / (𝐵𝐴)) ∈ ℂ
252 cncfmptc 23521 . . . . . . . . . . . . . . . . . 18 (((𝐴 / (𝐵𝐴)) ∈ ℂ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐴 / (𝐵𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
253251, 230, 231, 252mp3an 1457 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐴 / (𝐵𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℂ)
254253a1i 11 . . . . . . . . . . . . . . . 16 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐴 / (𝐵𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
255223, 225, 250, 254cncfmpt2f 23524 . . . . . . . . . . . . . . 15 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑥 / (𝐵𝐴)) − (𝐴 / (𝐵𝐴)))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
256241, 255eqeltrd 2915 . . . . . . . . . . . . . 14 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑥𝐴) / (𝐵𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
257 cncfmptc 23521 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ ℂ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐹) ∈ ((𝐴[,]𝐵)–cn→ℂ))
25861, 230, 231, 257mp3an 1457 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐹) ∈ ((𝐴[,]𝐵)–cn→ℂ)
259258a1i 11 . . . . . . . . . . . . . . 15 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐹) ∈ ((𝐴[,]𝐵)–cn→ℂ))
260223, 225, 259, 234cncfmpt2f 23524 . . . . . . . . . . . . . 14 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝐸)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
261256, 260mulcncf 24049 . . . . . . . . . . . . 13 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
262223, 228, 234, 261cncfmpt2f 23524 . . . . . . . . . . . 12 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐸 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸)))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
263226, 262eqeltrid 2919 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑉) ∈ ((𝐴[,]𝐵)–cn→ℂ))
26431mpteq2i 5160 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑈) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐶 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶))))
265 cncfmptc 23521 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℂ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2668, 230, 231, 265mp3an 1457 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ ((𝐴[,]𝐵)–cn→ℂ)
267266a1i 11 . . . . . . . . . . . . 13 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ ((𝐴[,]𝐵)–cn→ℂ))
268 cncfmptc 23521 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ ℂ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐷) ∈ ((𝐴[,]𝐵)–cn→ℂ))
26926, 230, 231, 268mp3an 1457 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐷) ∈ ((𝐴[,]𝐵)–cn→ℂ)
270269a1i 11 . . . . . . . . . . . . . . 15 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐷) ∈ ((𝐴[,]𝐵)–cn→ℂ))
271223, 225, 270, 267cncfmpt2f 23524 . . . . . . . . . . . . . 14 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
272256, 271mulcncf 24049 . . . . . . . . . . . . 13 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
273223, 228, 267, 272cncfmpt2f 23524 . . . . . . . . . . . 12 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐶 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶)))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
274264, 273eqeltrid 2919 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑈) ∈ ((𝐴[,]𝐵)–cn→ℂ))
275223, 225, 263, 274cncfmpt2f 23524 . . . . . . . . . 10 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑉𝑈)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
276275mptru 1544 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑉𝑈)) ∈ ((𝐴[,]𝐵)–cn→ℂ)
277 cniccibl 24443 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑉𝑈)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑉𝑈)) ∈ 𝐿1)
2781, 2, 276, 277mp3an 1457 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑉𝑈)) ∈ 𝐿1
279222, 278eqeltri 2911 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1
280279a1i 11 . . . . . 6 (0 ∈ ℝ → (𝑥 ∈ (𝐴[,]𝐵) ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1)
281213, 215, 218, 221, 280iblss2 24408 . . . . 5 (0 ∈ ℝ → (𝑥 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1)
282193, 281ax-mp 5 . . . 4 (𝑥 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1
283 dmarea 25537 . . . 4 (𝑆 ∈ dom area ↔ (𝑆 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝑆 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1))
28496, 212, 282, 283mpbir3an 1337 . . 3 𝑆 ∈ dom area
285 areaval 25544 . . 3 (𝑆 ∈ dom area → (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥)
286284, 285ax-mp 5 . 2 (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥
287 itgeq2 24380 . . . 4 (∀𝑥 ∈ ℝ (vol‘(𝑆 “ {𝑥})) = if(𝑥 ∈ (𝐴[,]𝐵), (𝑉𝑈), 0) → ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝑉𝑈), 0) d𝑥)
288191a1i 11 . . . 4 (𝑥 ∈ ℝ → (vol‘(𝑆 “ {𝑥})) = if(𝑥 ∈ (𝐴[,]𝐵), (𝑉𝑈), 0))
289287, 288mprg 3154 . . 3 ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝑉𝑈), 0) d𝑥
290 itgss2 24415 . . . 4 ((𝐴[,]𝐵) ⊆ ℝ → ∫(𝐴[,]𝐵)(𝑉𝑈) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝑉𝑈), 0) d𝑥)
2914, 290ax-mp 5 . . 3 ∫(𝐴[,]𝐵)(𝑉𝑈) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝑉𝑈), 0) d𝑥
29261, 58addcli 10649 . . . . . 6 (𝐹 + 𝐸) ∈ ℂ
293 2cnne0 11850 . . . . . 6 (2 ∈ ℂ ∧ 2 ≠ 0)
294 div32 11320 . . . . . 6 (((𝐹 + 𝐸) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (𝐵𝐴) ∈ ℂ) → (((𝐹 + 𝐸) / 2) · (𝐵𝐴)) = ((𝐹 + 𝐸) · ((𝐵𝐴) / 2)))
295292, 293, 147, 294mp3an 1457 . . . . 5 (((𝐹 + 𝐸) / 2) · (𝐵𝐴)) = ((𝐹 + 𝐸) · ((𝐵𝐴) / 2))
29626, 8addcli 10649 . . . . . 6 (𝐷 + 𝐶) ∈ ℂ
297 div32 11320 . . . . . 6 (((𝐷 + 𝐶) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (𝐵𝐴) ∈ ℂ) → (((𝐷 + 𝐶) / 2) · (𝐵𝐴)) = ((𝐷 + 𝐶) · ((𝐵𝐴) / 2)))
298296, 293, 147, 297mp3an 1457 . . . . 5 (((𝐷 + 𝐶) / 2) · (𝐵𝐴)) = ((𝐷 + 𝐶) · ((𝐵𝐴) / 2))
299295, 298oveq12i 7170 . . . 4 ((((𝐹 + 𝐸) / 2) · (𝐵𝐴)) − (((𝐷 + 𝐶) / 2) · (𝐵𝐴))) = (((𝐹 + 𝐸) · ((𝐵𝐴) / 2)) − ((𝐷 + 𝐶) · ((𝐵𝐴) / 2)))
300 2cn 11715 . . . . . 6 2 ∈ ℂ
301 2ne0 11744 . . . . . 6 2 ≠ 0
302292, 300, 301divcli 11384 . . . . 5 ((𝐹 + 𝐸) / 2) ∈ ℂ
303296, 300, 301divcli 11384 . . . . 5 ((𝐷 + 𝐶) / 2) ∈ ℂ
304302, 303, 147subdiri 11092 . . . 4 ((((𝐹 + 𝐸) / 2) − ((𝐷 + 𝐶) / 2)) · (𝐵𝐴)) = ((((𝐹 + 𝐸) / 2) · (𝐵𝐴)) − (((𝐷 + 𝐶) / 2) · (𝐵𝐴)))
305114adantl 484 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑉 ∈ ℝ)
306263mptru 1544 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑉) ∈ ((𝐴[,]𝐵)–cn→ℂ)
307 cniccibl 24443 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑉) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑉) ∈ 𝐿1)
3081, 2, 306, 307mp3an 1457 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑉) ∈ 𝐿1
309308a1i 11 . . . . . . 7 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑉) ∈ 𝐿1)
310113adantl 484 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑈 ∈ ℝ)
311274mptru 1544 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑈) ∈ ((𝐴[,]𝐵)–cn→ℂ)
312 cniccibl 24443 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑈) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑈) ∈ 𝐿1)
3131, 2, 311, 312mp3an 1457 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑈) ∈ 𝐿1
314313a1i 11 . . . . . . 7 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑈) ∈ 𝐿1)
315305, 309, 310, 314itgsub 24428 . . . . . 6 (⊤ → ∫(𝐴[,]𝐵)(𝑉𝑈) d𝑥 = (∫(𝐴[,]𝐵)𝑉 d𝑥 − ∫(𝐴[,]𝐵)𝑈 d𝑥))
316315mptru 1544 . . . . 5 ∫(𝐴[,]𝐵)(𝑉𝑈) d𝑥 = (∫(𝐴[,]𝐵)𝑉 d𝑥 − ∫(𝐴[,]𝐵)𝑈 d𝑥)
31758, 300, 301divcan4i 11389 . . . . . . . . . . 11 ((𝐸 · 2) / 2) = 𝐸
318317oveq1i 7168 . . . . . . . . . 10 (((𝐸 · 2) / 2) · (𝐵𝐴)) = (𝐸 · (𝐵𝐴))
31958, 300mulcli 10650 . . . . . . . . . . 11 (𝐸 · 2) ∈ ℂ
320 div32 11320 . . . . . . . . . . 11 (((𝐸 · 2) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (𝐵𝐴) ∈ ℂ) → (((𝐸 · 2) / 2) · (𝐵𝐴)) = ((𝐸 · 2) · ((𝐵𝐴) / 2)))
321319, 293, 147, 320mp3an 1457 . . . . . . . . . 10 (((𝐸 · 2) / 2) · (𝐵𝐴)) = ((𝐸 · 2) · ((𝐵𝐴) / 2))
322318, 321eqtr3i 2848 . . . . . . . . 9 (𝐸 · (𝐵𝐴)) = ((𝐸 · 2) · ((𝐵𝐴) / 2))
323322oveq1i 7168 . . . . . . . 8 ((𝐸 · (𝐵𝐴)) + ((𝐹𝐸) · ((𝐵𝐴) / 2))) = (((𝐸 · 2) · ((𝐵𝐴) / 2)) + ((𝐹𝐸) · ((𝐵𝐴) / 2)))
324 itgeq2 24380 . . . . . . . . . 10 (∀𝑥 ∈ (𝐴[,]𝐵)𝑉 = (𝐸 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸))) → ∫(𝐴[,]𝐵)𝑉 d𝑥 = ∫(𝐴[,]𝐵)(𝐸 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸))) d𝑥)
32566a1i 11 . . . . . . . . . 10 (𝑥 ∈ (𝐴[,]𝐵) → 𝑉 = (𝐸 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸))))
326324, 325mprg 3154 . . . . . . . . 9 ∫(𝐴[,]𝐵)𝑉 d𝑥 = ∫(𝐴[,]𝐵)(𝐸 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸))) d𝑥
32757a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐸 ∈ ℝ)
328 cniccibl 24443 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ 𝐿1)
3291, 2, 233, 328mp3an 1457 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ 𝐿1
330329a1i 11 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ 𝐿1)
331126adantl 484 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝑥𝐴) / (𝐵𝐴)) ∈ ℝ)
33260a1i 11 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐹 ∈ ℝ)
333332, 327resubcld 11070 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝐸) ∈ ℝ)
334331, 333remulcld 10673 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸)) ∈ ℝ)
335261mptru 1544 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸))) ∈ ((𝐴[,]𝐵)–cn→ℂ)
336 cniccibl 24443 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸))) ∈ 𝐿1)
3371, 2, 335, 336mp3an 1457 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸))) ∈ 𝐿1
338337a1i 11 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸))) ∈ 𝐿1)
339327, 330, 334, 338itgadd 24427 . . . . . . . . . 10 (⊤ → ∫(𝐴[,]𝐵)(𝐸 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸))) d𝑥 = (∫(𝐴[,]𝐵)𝐸 d𝑥 + ∫(𝐴[,]𝐵)(((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸)) d𝑥))
340339mptru 1544 . . . . . . . . 9 ∫(𝐴[,]𝐵)(𝐸 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸))) d𝑥 = (∫(𝐴[,]𝐵)𝐸 d𝑥 + ∫(𝐴[,]𝐵)(((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸)) d𝑥)
341 iccmbl 24169 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ dom vol)
3421, 2, 341mp2an 690 . . . . . . . . . . . 12 (𝐴[,]𝐵) ∈ dom vol
343 mblvol 24133 . . . . . . . . . . . . . . 15 ((𝐴[,]𝐵) ∈ dom vol → (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵)))
344342, 343ax-mp 5 . . . . . . . . . . . . . 14 (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵))
3451, 2, 17ltleii 10765 . . . . . . . . . . . . . . 15 𝐴𝐵
346 ovolicc 24126 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵𝐴))
3471, 2, 345, 346mp3an 1457 . . . . . . . . . . . . . 14 (vol*‘(𝐴[,]𝐵)) = (𝐵𝐴)
348344, 347eqtri 2846 . . . . . . . . . . . . 13 (vol‘(𝐴[,]𝐵)) = (𝐵𝐴)
349348, 12eqeltri 2911 . . . . . . . . . . . 12 (vol‘(𝐴[,]𝐵)) ∈ ℝ
350 itgconst 24421 . . . . . . . . . . . 12 (((𝐴[,]𝐵) ∈ dom vol ∧ (vol‘(𝐴[,]𝐵)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ∫(𝐴[,]𝐵)𝐸 d𝑥 = (𝐸 · (vol‘(𝐴[,]𝐵))))
351342, 349, 58, 350mp3an 1457 . . . . . . . . . . 11 ∫(𝐴[,]𝐵)𝐸 d𝑥 = (𝐸 · (vol‘(𝐴[,]𝐵)))
352348oveq2i 7169 . . . . . . . . . . 11 (𝐸 · (vol‘(𝐴[,]𝐵))) = (𝐸 · (𝐵𝐴))
353351, 352eqtri 2846 . . . . . . . . . 10 ∫(𝐴[,]𝐵)𝐸 d𝑥 = (𝐸 · (𝐵𝐴))
35461a1i 11 . . . . . . . . . . . . . 14 (⊤ → 𝐹 ∈ ℂ)
35558a1i 11 . . . . . . . . . . . . . 14 (⊤ → 𝐸 ∈ ℂ)
356354, 355subcld 10999 . . . . . . . . . . . . 13 (⊤ → (𝐹𝐸) ∈ ℂ)
357256mptru 1544 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑥𝐴) / (𝐵𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℂ)
358 cniccibl 24443 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑥𝐴) / (𝐵𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑥𝐴) / (𝐵𝐴))) ∈ 𝐿1)
3591, 2, 357, 358mp3an 1457 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑥𝐴) / (𝐵𝐴))) ∈ 𝐿1
360359a1i 11 . . . . . . . . . . . . 13 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑥𝐴) / (𝐵𝐴))) ∈ 𝐿1)
361356, 331, 360itgmulc2 24436 . . . . . . . . . . . 12 (⊤ → ((𝐹𝐸) · ∫(𝐴[,]𝐵)((𝑥𝐴) / (𝐵𝐴)) d𝑥) = ∫(𝐴[,]𝐵)((𝐹𝐸) · ((𝑥𝐴) / (𝐵𝐴))) d𝑥)
362361mptru 1544 . . . . . . . . . . 11 ((𝐹𝐸) · ∫(𝐴[,]𝐵)((𝑥𝐴) / (𝐵𝐴)) d𝑥) = ∫(𝐴[,]𝐵)((𝐹𝐸) · ((𝑥𝐴) / (𝐵𝐴))) d𝑥
363 itgeq2 24380 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ (𝐴[,]𝐵)((𝑥𝐴) / (𝐵𝐴)) = ((1 / (𝐵𝐴)) · (𝑥𝐴)) → ∫(𝐴[,]𝐵)((𝑥𝐴) / (𝐵𝐴)) d𝑥 = ∫(𝐴[,]𝐵)((1 / (𝐵𝐴)) · (𝑥𝐴)) d𝑥)
364137recnd 10671 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴[,]𝐵) → (𝑥𝐴) ∈ ℂ)
365364, 237, 238divrec2d 11422 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴[,]𝐵) → ((𝑥𝐴) / (𝐵𝐴)) = ((1 / (𝐵𝐴)) · (𝑥𝐴)))
366363, 365mprg 3154 . . . . . . . . . . . . . 14 ∫(𝐴[,]𝐵)((𝑥𝐴) / (𝐵𝐴)) d𝑥 = ∫(𝐴[,]𝐵)((1 / (𝐵𝐴)) · (𝑥𝐴)) d𝑥
3675adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((⊤ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
368 cncfmptid 23522 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
369230, 231, 368mp2an 690 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ)
370 cniccibl 24443 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑥) ∈ 𝐿1)
3711, 2, 369, 370mp3an 1457 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑥) ∈ 𝐿1
372371a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑥) ∈ 𝐿1)
3731a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((⊤ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
374 cncfmptc 23521 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐴) ∈ ((𝐴[,]𝐵)–cn→ℂ))
375139, 230, 231, 374mp3an 1457 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐴) ∈ ((𝐴[,]𝐵)–cn→ℂ)
376 cniccibl 24443 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐴) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐴) ∈ 𝐿1)
3771, 2, 375, 376mp3an 1457 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐴) ∈ 𝐿1
378377a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐴) ∈ 𝐿1)
379367, 372, 373, 378itgsub 24428 . . . . . . . . . . . . . . . . . . 19 (⊤ → ∫(𝐴[,]𝐵)(𝑥𝐴) d𝑥 = (∫(𝐴[,]𝐵)𝑥 d𝑥 − ∫(𝐴[,]𝐵)𝐴 d𝑥))
380379mptru 1544 . . . . . . . . . . . . . . . . . 18 ∫(𝐴[,]𝐵)(𝑥𝐴) d𝑥 = (∫(𝐴[,]𝐵)𝑥 d𝑥 − ∫(𝐴[,]𝐵)𝐴 d𝑥)
3811a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → 𝐴 ∈ ℝ)
3822a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → 𝐵 ∈ ℝ)
383345a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → 𝐴𝐵)
384 1nn0 11916 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℕ0
385384a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → 1 ∈ ℕ0)
386381, 382, 383, 385itgpowd 39828 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → ∫(𝐴[,]𝐵)(𝑥↑1) d𝑥 = (((𝐵↑(1 + 1)) − (𝐴↑(1 + 1))) / (1 + 1)))
387386mptru 1544 . . . . . . . . . . . . . . . . . . . . 21 ∫(𝐴[,]𝐵)(𝑥↑1) d𝑥 = (((𝐵↑(1 + 1)) − (𝐴↑(1 + 1))) / (1 + 1))
388 1p1e2 11765 . . . . . . . . . . . . . . . . . . . . . 22 (1 + 1) = 2
389388oveq2i 7169 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵↑(1 + 1)) − (𝐴↑(1 + 1))) / (1 + 1)) = (((𝐵↑(1 + 1)) − (𝐴↑(1 + 1))) / 2)
390387, 389eqtri 2846 . . . . . . . . . . . . . . . . . . . 20 ∫(𝐴[,]𝐵)(𝑥↑1) d𝑥 = (((𝐵↑(1 + 1)) − (𝐴↑(1 + 1))) / 2)
391 itgeq2 24380 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑥 ∈ (𝐴[,]𝐵)(𝑥↑1) = 𝑥 → ∫(𝐴[,]𝐵)(𝑥↑1) d𝑥 = ∫(𝐴[,]𝐵)𝑥 d𝑥)
392235exp1d 13508 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐴[,]𝐵) → (𝑥↑1) = 𝑥)
393391, 392mprg 3154 . . . . . . . . . . . . . . . . . . . 20 ∫(𝐴[,]𝐵)(𝑥↑1) d𝑥 = ∫(𝐴[,]𝐵)𝑥 d𝑥
394388oveq2i 7169 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵↑(1 + 1)) = (𝐵↑2)
395388oveq2i 7169 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴↑(1 + 1)) = (𝐴↑2)
396394, 395oveq12i 7170 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵↑(1 + 1)) − (𝐴↑(1 + 1))) = ((𝐵↑2) − (𝐴↑2))
397396oveq1i 7168 . . . . . . . . . . . . . . . . . . . 20 (((𝐵↑(1 + 1)) − (𝐴↑(1 + 1))) / 2) = (((𝐵↑2) − (𝐴↑2)) / 2)
398390, 393, 3973eqtr3i 2854 . . . . . . . . . . . . . . . . . . 19 ∫(𝐴[,]𝐵)𝑥 d𝑥 = (((𝐵↑2) − (𝐴↑2)) / 2)
399 itgconst 24421 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴[,]𝐵) ∈ dom vol ∧ (vol‘(𝐴[,]𝐵)) ∈ ℝ ∧ 𝐴 ∈ ℂ) → ∫(𝐴[,]𝐵)𝐴 d𝑥 = (𝐴 · (vol‘(𝐴[,]𝐵))))
400342, 349, 139, 399mp3an 1457 . . . . . . . . . . . . . . . . . . . 20 ∫(𝐴[,]𝐵)𝐴 d𝑥 = (𝐴 · (vol‘(𝐴[,]𝐵)))
401348oveq2i 7169 . . . . . . . . . . . . . . . . . . . 20 (𝐴 · (vol‘(𝐴[,]𝐵))) = (𝐴 · (𝐵𝐴))
402400, 401eqtri 2846 . . . . . . . . . . . . . . . . . . 19 ∫(𝐴[,]𝐵)𝐴 d𝑥 = (𝐴 · (𝐵𝐴))
403398, 402oveq12i 7170 . . . . . . . . . . . . . . . . . 18 (∫(𝐴[,]𝐵)𝑥 d𝑥 − ∫(𝐴[,]𝐵)𝐴 d𝑥) = ((((𝐵↑2) − (𝐴↑2)) / 2) − (𝐴 · (𝐵𝐴)))
404380, 403eqtri 2846 . . . . . . . . . . . . . . . . 17 ∫(𝐴[,]𝐵)(𝑥𝐴) d𝑥 = ((((𝐵↑2) − (𝐴↑2)) / 2) − (𝐴 · (𝐵𝐴)))
405404oveq2i 7169 . . . . . . . . . . . . . . . 16 ((1 / (𝐵𝐴)) · ∫(𝐴[,]𝐵)(𝑥𝐴) d𝑥) = ((1 / (𝐵𝐴)) · ((((𝐵↑2) − (𝐴↑2)) / 2) − (𝐴 · (𝐵𝐴))))
40614a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 𝐵 ∈ ℂ)
407139a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 𝐴 ∈ ℂ)
408406, 407subcld 10999 . . . . . . . . . . . . . . . . . . 19 (⊤ → (𝐵𝐴) ∈ ℂ)
40918a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 𝐵𝐴)
410406, 407, 409subne0d 11008 . . . . . . . . . . . . . . . . . . 19 (⊤ → (𝐵𝐴) ≠ 0)
411408, 410reccld 11411 . . . . . . . . . . . . . . . . . 18 (⊤ → (1 / (𝐵𝐴)) ∈ ℂ)
412411mptru 1544 . . . . . . . . . . . . . . . . 17 (1 / (𝐵𝐴)) ∈ ℂ
41314sqcli 13547 . . . . . . . . . . . . . . . . . . 19 (𝐵↑2) ∈ ℂ
414139sqcli 13547 . . . . . . . . . . . . . . . . . . 19 (𝐴↑2) ∈ ℂ
415413, 414subcli 10964 . . . . . . . . . . . . . . . . . 18 ((𝐵↑2) − (𝐴↑2)) ∈ ℂ
416415, 300, 301divcli 11384 . . . . . . . . . . . . . . . . 17 (((𝐵↑2) − (𝐴↑2)) / 2) ∈ ℂ
417139, 147mulcli 10650 . . . . . . . . . . . . . . . . 17 (𝐴 · (𝐵𝐴)) ∈ ℂ
418412, 416, 417subdii 11091 . . . . . . . . . . . . . . . 16 ((1 / (𝐵𝐴)) · ((((𝐵↑2) − (𝐴↑2)) / 2) − (𝐴 · (𝐵𝐴)))) = (((1 / (𝐵𝐴)) · (((𝐵↑2) − (𝐴↑2)) / 2)) − ((1 / (𝐵𝐴)) · (𝐴 · (𝐵𝐴))))
419405, 418eqtri 2846 . . . . . . . . . . . . . . 15 ((1 / (𝐵𝐴)) · ∫(𝐴[,]𝐵)(𝑥𝐴) d𝑥) = (((1 / (𝐵𝐴)) · (((𝐵↑2) − (𝐴↑2)) / 2)) − ((1 / (𝐵𝐴)) · (𝐴 · (𝐵𝐴))))
420137adantl 484 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥𝐴) ∈ ℝ)
421367, 372, 373, 378iblsub 24424 . . . . . . . . . . . . . . . . 17 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝐴)) ∈ 𝐿1)
422411, 420, 421itgmulc2 24436 . . . . . . . . . . . . . . . 16 (⊤ → ((1 / (𝐵𝐴)) · ∫(𝐴[,]𝐵)(𝑥𝐴) d𝑥) = ∫(𝐴[,]𝐵)((1 / (𝐵𝐴)) · (𝑥𝐴)) d𝑥)
423422mptru 1544 . . . . . . . . . . . . . . 15 ((1 / (𝐵𝐴)) · ∫(𝐴[,]𝐵)(𝑥𝐴) d𝑥) = ∫(𝐴[,]𝐵)((1 / (𝐵𝐴)) · (𝑥𝐴)) d𝑥
424412, 417mulcomi 10651 . . . . . . . . . . . . . . . . 17 ((1 / (𝐵𝐴)) · (𝐴 · (𝐵𝐴))) = ((𝐴 · (𝐵𝐴)) · (1 / (𝐵𝐴)))
425417, 147, 21divreci 11387 . . . . . . . . . . . . . . . . 17 ((𝐴 · (𝐵𝐴)) / (𝐵𝐴)) = ((𝐴 · (𝐵𝐴)) · (1 / (𝐵𝐴)))
426139, 147, 21divcan4i 11389 . . . . . . . . . . . . . . . . 17 ((𝐴 · (𝐵𝐴)) / (𝐵𝐴)) = 𝐴
427424, 425, 4263eqtr2i 2852 . . . . . . . . . . . . . . . 16 ((1 / (𝐵𝐴)) · (𝐴 · (𝐵𝐴))) = 𝐴
428427oveq2i 7169 . . . . . . . . . . . . . . 15 (((1 / (𝐵𝐴)) · (((𝐵↑2) − (𝐴↑2)) / 2)) − ((1 / (𝐵𝐴)) · (𝐴 · (𝐵𝐴)))) = (((1 / (𝐵𝐴)) · (((𝐵↑2) − (𝐴↑2)) / 2)) − 𝐴)
429419, 423, 4283eqtr3i 2854 . . . . . . . . . . . . . 14 ∫(𝐴[,]𝐵)((1 / (𝐵𝐴)) · (𝑥𝐴)) d𝑥 = (((1 / (𝐵𝐴)) · (((𝐵↑2) − (𝐴↑2)) / 2)) − 𝐴)
430366, 429eqtri 2846 . . . . . . . . . . . . 13 ∫(𝐴[,]𝐵)((𝑥𝐴) / (𝐵𝐴)) d𝑥 = (((1 / (𝐵𝐴)) · (((𝐵↑2) − (𝐴↑2)) / 2)) − 𝐴)
43114, 139subsqi 13578 . . . . . . . . . . . . . . . . 17 ((𝐵↑2) − (𝐴↑2)) = ((𝐵 + 𝐴) · (𝐵𝐴))
432431oveq1i 7168 . . . . . . . . . . . . . . . 16 (((𝐵↑2) − (𝐴↑2)) / 2) = (((𝐵 + 𝐴) · (𝐵𝐴)) / 2)
433432oveq2i 7169 . . . . . . . . . . . . . . 15 ((1 / (𝐵𝐴)) · (((𝐵↑2) − (𝐴↑2)) / 2)) = ((1 / (𝐵𝐴)) · (((𝐵 + 𝐴) · (𝐵𝐴)) / 2))
434431, 415eqeltrri 2912 . . . . . . . . . . . . . . . 16 ((𝐵 + 𝐴) · (𝐵𝐴)) ∈ ℂ
435412, 434, 300, 301divassi 11398 . . . . . . . . . . . . . . 15 (((1 / (𝐵𝐴)) · ((𝐵 + 𝐴) · (𝐵𝐴))) / 2) = ((1 / (𝐵𝐴)) · (((𝐵 + 𝐴) · (𝐵𝐴)) / 2))
436412, 434mulcomi 10651 . . . . . . . . . . . . . . . . 17 ((1 / (𝐵𝐴)) · ((𝐵 + 𝐴) · (𝐵𝐴))) = (((𝐵 + 𝐴) · (𝐵𝐴)) · (1 / (𝐵𝐴)))
437434, 147, 21divreci 11387 . . . . . . . . . . . . . . . . 17 (((𝐵 + 𝐴) · (𝐵𝐴)) / (𝐵𝐴)) = (((𝐵 + 𝐴) · (𝐵𝐴)) · (1 / (𝐵𝐴)))
43814, 139addcli 10649 . . . . . . . . . . . . . . . . . 18 (𝐵 + 𝐴) ∈ ℂ
439438, 147, 21divcan4i 11389 . . . . . . . . . . . . . . . . 17 (((𝐵 + 𝐴) · (𝐵𝐴)) / (𝐵𝐴)) = (𝐵 + 𝐴)
440436, 437, 4393eqtr2i 2852 . . . . . . . . . . . . . . . 16 ((1 / (𝐵𝐴)) · ((𝐵 + 𝐴) · (𝐵𝐴))) = (𝐵 + 𝐴)
441440oveq1i 7168 . . . . . . . . . . . . . . 15 (((1 / (𝐵𝐴)) · ((𝐵 + 𝐴) · (𝐵𝐴))) / 2) = ((𝐵 + 𝐴) / 2)
442433, 435, 4413eqtr2i 2852 . . . . . . . . . . . . . 14 ((1 / (𝐵𝐴)) · (((𝐵↑2) − (𝐴↑2)) / 2)) = ((𝐵 + 𝐴) / 2)
443442oveq1i 7168 . . . . . . . . . . . . 13 (((1 / (𝐵𝐴)) · (((𝐵↑2) − (𝐴↑2)) / 2)) − 𝐴) = (((𝐵 + 𝐴) / 2) − 𝐴)
444139, 300mulcli 10650 . . . . . . . . . . . . . . 15 (𝐴 · 2) ∈ ℂ
445 divsubdir 11336 . . . . . . . . . . . . . . 15 (((𝐵 + 𝐴) ∈ ℂ ∧ (𝐴 · 2) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝐵 + 𝐴) − (𝐴 · 2)) / 2) = (((𝐵 + 𝐴) / 2) − ((𝐴 · 2) / 2)))
446438, 444, 293, 445mp3an 1457 . . . . . . . . . . . . . 14 (((𝐵 + 𝐴) − (𝐴 · 2)) / 2) = (((𝐵 + 𝐴) / 2) − ((𝐴 · 2) / 2))
44714, 139, 444addsubassi 10979 . . . . . . . . . . . . . . . 16 ((𝐵 + 𝐴) − (𝐴 · 2)) = (𝐵 + (𝐴 − (𝐴 · 2)))
448 subsub2 10916 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℂ ∧ (𝐴 · 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 − ((𝐴 · 2) − 𝐴)) = (𝐵 + (𝐴 − (𝐴 · 2))))
44914, 444, 139, 448mp3an 1457 . . . . . . . . . . . . . . . 16 (𝐵 − ((𝐴 · 2) − 𝐴)) = (𝐵 + (𝐴 − (𝐴 · 2)))
450139times2i 11779 . . . . . . . . . . . . . . . . . . 19 (𝐴 · 2) = (𝐴 + 𝐴)
451450oveq1i 7168 . . . . . . . . . . . . . . . . . 18 ((𝐴 · 2) − 𝐴) = ((𝐴 + 𝐴) − 𝐴)
452139, 139pncan3oi 10904 . . . . . . . . . . . . . . . . . 18 ((𝐴 + 𝐴) − 𝐴) = 𝐴
453451, 452eqtri 2846 . . . . . . . . . . . . . . . . 17 ((𝐴 · 2) − 𝐴) = 𝐴
454453oveq2i 7169 . . . . . . . . . . . . . . . 16 (𝐵 − ((𝐴 · 2) − 𝐴)) = (𝐵𝐴)
455447, 449, 4543eqtr2i 2852 . . . . . . . . . . . . . . 15 ((𝐵 + 𝐴) − (𝐴 · 2)) = (𝐵𝐴)
456455oveq1i 7168 . . . . . . . . . . . . . 14 (((𝐵 + 𝐴) − (𝐴 · 2)) / 2) = ((𝐵𝐴) / 2)
457139, 300, 301divcan4i 11389 . . . . . . . . . . . . . . 15 ((𝐴 · 2) / 2) = 𝐴
458457oveq2i 7169 . . . . . . . . . . . . . 14 (((𝐵 + 𝐴) / 2) − ((𝐴 · 2) / 2)) = (((𝐵 + 𝐴) / 2) − 𝐴)
459446, 456, 4583eqtr3ri 2855 . . . . . . . . . . . . 13 (((𝐵 + 𝐴) / 2) − 𝐴) = ((𝐵𝐴) / 2)
460430, 443, 4593eqtri 2850 . . . . . . . . . . . 12 ∫(𝐴[,]𝐵)((𝑥𝐴) / (𝐵𝐴)) d𝑥 = ((𝐵𝐴) / 2)
461460oveq2i 7169 . . . . . . . . . . 11 ((𝐹𝐸) · ∫(𝐴[,]𝐵)((𝑥𝐴) / (𝐵𝐴)) d𝑥) = ((𝐹𝐸) · ((𝐵𝐴) / 2))
462 itgeq2 24380 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝐴[,]𝐵)((𝐹𝐸) · ((𝑥𝐴) / (𝐵𝐴))) = (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸)) → ∫(𝐴[,]𝐵)((𝐹𝐸) · ((𝑥𝐴) / (𝐵𝐴))) d𝑥 = ∫(𝐴[,]𝐵)(((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸)) d𝑥)
46361, 58subcli 10964 . . . . . . . . . . . . . 14 (𝐹𝐸) ∈ ℂ
464463a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴[,]𝐵) → (𝐹𝐸) ∈ ℂ)
465464, 127mulcomd 10664 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴[,]𝐵) → ((𝐹𝐸) · ((𝑥𝐴) / (𝐵𝐴))) = (((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸)))
466462, 465mprg 3154 . . . . . . . . . . 11 ∫(𝐴[,]𝐵)((𝐹𝐸) · ((𝑥𝐴) / (𝐵𝐴))) d𝑥 = ∫(𝐴[,]𝐵)(((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸)) d𝑥
467362, 461, 4663eqtr3ri 2855 . . . . . . . . . 10 ∫(𝐴[,]𝐵)(((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸)) d𝑥 = ((𝐹𝐸) · ((𝐵𝐴) / 2))
468353, 467oveq12i 7170 . . . . . . . . 9 (∫(𝐴[,]𝐵)𝐸 d𝑥 + ∫(𝐴[,]𝐵)(((𝑥𝐴) / (𝐵𝐴)) · (𝐹𝐸)) d𝑥) = ((𝐸 · (𝐵𝐴)) + ((𝐹𝐸) · ((𝐵𝐴) / 2)))
469326, 340, 4683eqtri 2850 . . . . . . . 8 ∫(𝐴[,]𝐵)𝑉 d𝑥 = ((𝐸 · (𝐵𝐴)) + ((𝐹𝐸) · ((𝐵𝐴) / 2)))
470147, 300, 301divcli 11384 . . . . . . . . 9 ((𝐵𝐴) / 2) ∈ ℂ
471319, 463, 470adddiri 10656 . . . . . . . 8 (((𝐸 · 2) + (𝐹𝐸)) · ((𝐵𝐴) / 2)) = (((𝐸 · 2) · ((𝐵𝐴) / 2)) + ((𝐹𝐸) · ((𝐵𝐴) / 2)))
472323, 469, 4713eqtr4i 2856 . . . . . . 7 ∫(𝐴[,]𝐵)𝑉 d𝑥 = (((𝐸 · 2) + (𝐹𝐸)) · ((𝐵𝐴) / 2))
473 addsub12 10901 . . . . . . . . . 10 ((𝐹 ∈ ℂ ∧ (𝐸 · 2) ∈ ℂ ∧ 𝐸 ∈ ℂ) → (𝐹 + ((𝐸 · 2) − 𝐸)) = ((𝐸 · 2) + (𝐹𝐸)))
47461, 319, 58, 473mp3an 1457 . . . . . . . . 9 (𝐹 + ((𝐸 · 2) − 𝐸)) = ((𝐸 · 2) + (𝐹𝐸))
47558times2i 11779 . . . . . . . . . . . 12 (𝐸 · 2) = (𝐸 + 𝐸)
476475oveq1i 7168 . . . . . . . . . . 11 ((𝐸 · 2) − 𝐸) = ((𝐸 + 𝐸) − 𝐸)
47758, 58pncan3oi 10904 . . . . . . . . . . 11 ((𝐸 + 𝐸) − 𝐸) = 𝐸
478476, 477eqtri 2846 . . . . . . . . . 10 ((𝐸 · 2) − 𝐸) = 𝐸
479478oveq2i 7169 . . . . . . . . 9 (𝐹 + ((𝐸 · 2) − 𝐸)) = (𝐹 + 𝐸)
480474, 479eqtr3i 2848 . . . . . . . 8 ((𝐸 · 2) + (𝐹𝐸)) = (𝐹 + 𝐸)
481480oveq1i 7168 . . . . . . 7 (((𝐸 · 2) + (𝐹𝐸)) · ((𝐵𝐴) / 2)) = ((𝐹 + 𝐸) · ((𝐵𝐴) / 2))
482472, 481eqtri 2846 . . . . . 6 ∫(𝐴[,]𝐵)𝑉 d𝑥 = ((𝐹 + 𝐸) · ((𝐵𝐴) / 2))
4838, 300, 301divcan4i 11389 . . . . . . . . . . 11 ((𝐶 · 2) / 2) = 𝐶
484483oveq1i 7168 . . . . . . . . . 10 (((𝐶 · 2) / 2) · (𝐵𝐴)) = (𝐶 · (𝐵𝐴))
4858, 300mulcli 10650 . . . . . . . . . . 11 (𝐶 · 2) ∈ ℂ
486 div32 11320 . . . . . . . . . . 11 (((𝐶 · 2) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (𝐵𝐴) ∈ ℂ) → (((𝐶 · 2) / 2) · (𝐵𝐴)) = ((𝐶 · 2) · ((𝐵𝐴) / 2)))
487485, 293, 147, 486mp3an 1457 . . . . . . . . . 10 (((𝐶 · 2) / 2) · (𝐵𝐴)) = ((𝐶 · 2) · ((𝐵𝐴) / 2))
488484, 487eqtr3i 2848 . . . . . . . . 9 (𝐶 · (𝐵𝐴)) = ((𝐶 · 2) · ((𝐵𝐴) / 2))
489488oveq1i 7168 . . . . . . . 8 ((𝐶 · (𝐵𝐴)) + ((𝐷𝐶) · ((𝐵𝐴) / 2))) = (((𝐶 · 2) · ((𝐵𝐴) / 2)) + ((𝐷𝐶) · ((𝐵𝐴) / 2)))
49031a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑈 = (𝐶 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶))))
491490itgeq2dv 24384 . . . . . . . . . 10 (⊤ → ∫(𝐴[,]𝐵)𝑈 d𝑥 = ∫(𝐴[,]𝐵)(𝐶 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶))) d𝑥)
492491mptru 1544 . . . . . . . . 9 ∫(𝐴[,]𝐵)𝑈 d𝑥 = ∫(𝐴[,]𝐵)(𝐶 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶))) d𝑥
4937a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ)
494 cniccibl 24443 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1)
4951, 2, 266, 494mp3an 1457 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1
496495a1i 11 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1)
49725a1i 11 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐷 ∈ ℝ)
498497, 493resubcld 11070 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐷𝐶) ∈ ℝ)
499331, 498remulcld 10673 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶)) ∈ ℝ)
500272mptru 1544 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶))) ∈ ((𝐴[,]𝐵)–cn→ℂ)
501 cniccibl 24443 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶))) ∈ 𝐿1)
5021, 2, 500, 501mp3an 1457 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶))) ∈ 𝐿1
503502a1i 11 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶))) ∈ 𝐿1)
504493, 496, 499, 503itgadd 24427 . . . . . . . . . 10 (⊤ → ∫(𝐴[,]𝐵)(𝐶 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶))) d𝑥 = (∫(𝐴[,]𝐵)𝐶 d𝑥 + ∫(𝐴[,]𝐵)(((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶)) d𝑥))
505504mptru 1544 . . . . . . . . 9 ∫(𝐴[,]𝐵)(𝐶 + (((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶))) d𝑥 = (∫(𝐴[,]𝐵)𝐶 d𝑥 + ∫(𝐴[,]𝐵)(((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶)) d𝑥)
506 itgconst 24421 . . . . . . . . . . . 12 (((𝐴[,]𝐵) ∈ dom vol ∧ (vol‘(𝐴[,]𝐵)) ∈ ℝ ∧ 𝐶 ∈ ℂ) → ∫(𝐴[,]𝐵)𝐶 d𝑥 = (𝐶 · (vol‘(𝐴[,]𝐵))))
507342, 349, 8, 506mp3an 1457 . . . . . . . . . . 11 ∫(𝐴[,]𝐵)𝐶 d𝑥 = (𝐶 · (vol‘(𝐴[,]𝐵)))
508348oveq2i 7169 . . . . . . . . . . 11 (𝐶 · (vol‘(𝐴[,]𝐵))) = (𝐶 · (𝐵𝐴))
509507, 508eqtri 2846 . . . . . . . . . 10 ∫(𝐴[,]𝐵)𝐶 d𝑥 = (𝐶 · (𝐵𝐴))
51026a1i 11 . . . . . . . . . . . . . 14 (⊤ → 𝐷 ∈ ℂ)
5118a1i 11 . . . . . . . . . . . . . 14 (⊤ → 𝐶 ∈ ℂ)
512510, 511subcld 10999 . . . . . . . . . . . . 13 (⊤ → (𝐷𝐶) ∈ ℂ)
513512, 331, 360itgmulc2 24436 . . . . . . . . . . . 12 (⊤ → ((𝐷𝐶) · ∫(𝐴[,]𝐵)((𝑥𝐴) / (𝐵𝐴)) d𝑥) = ∫(𝐴[,]𝐵)((𝐷𝐶) · ((𝑥𝐴) / (𝐵𝐴))) d𝑥)
514513mptru 1544 . . . . . . . . . . 11 ((𝐷𝐶) · ∫(𝐴[,]𝐵)((𝑥𝐴) / (𝐵𝐴)) d𝑥) = ∫(𝐴[,]𝐵)((𝐷𝐶) · ((𝑥𝐴) / (𝐵𝐴))) d𝑥
515460oveq2i 7169 . . . . . . . . . . 11 ((𝐷𝐶) · ∫(𝐴[,]𝐵)((𝑥𝐴) / (𝐵𝐴)) d𝑥) = ((𝐷𝐶) · ((𝐵𝐴) / 2))
516 itgeq2 24380 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝐴[,]𝐵)((𝐷𝐶) · ((𝑥𝐴) / (𝐵𝐴))) = (((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶)) → ∫(𝐴[,]𝐵)((𝐷𝐶) · ((𝑥𝐴) / (𝐵𝐴))) d𝑥 = ∫(𝐴[,]𝐵)(((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶)) d𝑥)
51726, 8subcli 10964 . . . . . . . . . . . . . 14 (𝐷𝐶) ∈ ℂ
518517a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴[,]𝐵) → (𝐷𝐶) ∈ ℂ)
519518, 127mulcomd 10664 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴[,]𝐵) → ((𝐷𝐶) · ((𝑥𝐴) / (𝐵𝐴))) = (((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶)))
520516, 519mprg 3154 . . . . . . . . . . 11 ∫(𝐴[,]𝐵)((𝐷𝐶) · ((𝑥𝐴) / (𝐵𝐴))) d𝑥 = ∫(𝐴[,]𝐵)(((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶)) d𝑥
521514, 515, 5203eqtr3ri 2855 . . . . . . . . . 10 ∫(𝐴[,]𝐵)(((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶)) d𝑥 = ((𝐷𝐶) · ((𝐵𝐴) / 2))
522509, 521oveq12i 7170 . . . . . . . . 9 (∫(𝐴[,]𝐵)𝐶 d𝑥 + ∫(𝐴[,]𝐵)(((𝑥𝐴) / (𝐵𝐴)) · (𝐷𝐶)) d𝑥) = ((𝐶 · (𝐵𝐴)) + ((𝐷𝐶) · ((𝐵𝐴) / 2)))
523492, 505, 5223eqtri 2850 . . . . . . . 8 ∫(𝐴[,]𝐵)𝑈 d𝑥 = ((𝐶 · (𝐵𝐴)) + ((𝐷𝐶) · ((𝐵𝐴) / 2)))
524485, 517, 470adddiri 10656 . . . . . . . 8 (((𝐶 · 2) + (𝐷𝐶)) · ((𝐵𝐴) / 2)) = (((𝐶 · 2) · ((𝐵𝐴) / 2)) + ((𝐷𝐶) · ((𝐵𝐴) / 2)))
525489, 523, 5243eqtr4i 2856 . . . . . . 7 ∫(𝐴[,]𝐵)𝑈 d𝑥 = (((𝐶 · 2) + (𝐷𝐶)) · ((𝐵𝐴) / 2))
526 addsub12 10901 . . . . . . . . . 10 ((𝐷 ∈ ℂ ∧ (𝐶 · 2) ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐷 + ((𝐶 · 2) − 𝐶)) = ((𝐶 · 2) + (𝐷𝐶)))
52726, 485, 8, 526mp3an 1457 . . . . . . . . 9 (𝐷 + ((𝐶 · 2) − 𝐶)) = ((𝐶 · 2) + (𝐷𝐶))
5288times2i 11779 . . . . . . . . . . . 12 (𝐶 · 2) = (𝐶 + 𝐶)
529528oveq1i 7168 . . . . . . . . . . 11 ((𝐶 · 2) − 𝐶) = ((𝐶 + 𝐶) − 𝐶)
5308, 8pncan3oi 10904 . . . . . . . . . . 11 ((𝐶 + 𝐶) − 𝐶) = 𝐶
531529, 530eqtri 2846 . . . . . . . . . 10 ((𝐶 · 2) − 𝐶) = 𝐶
532531oveq2i 7169 . . . . . . . . 9 (𝐷 + ((𝐶 · 2) − 𝐶)) = (𝐷 + 𝐶)
533527, 532eqtr3i 2848 . . . . . . . 8 ((𝐶 · 2) + (𝐷𝐶)) = (𝐷 + 𝐶)
534533oveq1i 7168 . . . . . . 7 (((𝐶 · 2) + (𝐷𝐶)) · ((𝐵𝐴) / 2)) = ((𝐷 + 𝐶) · ((𝐵𝐴) / 2))
535525, 534eqtri 2846 . . . . . 6 ∫(𝐴[,]𝐵)𝑈 d𝑥 = ((𝐷 + 𝐶) · ((𝐵𝐴) / 2))
536482, 535oveq12i 7170 . . . . 5 (∫(𝐴[,]𝐵)𝑉 d𝑥 − ∫(𝐴[,]𝐵)𝑈 d𝑥) = (((𝐹 + 𝐸) · ((𝐵𝐴) / 2)) − ((𝐷 + 𝐶) · ((𝐵𝐴) / 2)))
537316, 536eqtri 2846 . . . 4 ∫(𝐴[,]𝐵)(𝑉𝑈) d𝑥 = (((𝐹 + 𝐸) · ((𝐵𝐴) / 2)) − ((𝐷 + 𝐶) · ((𝐵𝐴) / 2)))
538299, 304, 5373eqtr4ri 2857 . . 3 ∫(𝐴[,]𝐵)(𝑉𝑈) d𝑥 = ((((𝐹 + 𝐸) / 2) − ((𝐷 + 𝐶) / 2)) · (𝐵𝐴))
539289, 291, 5383eqtr2i 2852 . 2 ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥 = ((((𝐹 + 𝐸) / 2) − ((𝐷 + 𝐶) / 2)) · (𝐵𝐴))
540286, 539eqtri 2846 1 (area‘𝑆) = ((((𝐹 + 𝐸) / 2) − ((𝐷 + 𝐶) / 2)) · (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398   = wceq 1537  wtru 1538  wcel 2114  wne 3018  wral 3140  cdif 3935  wss 3938  c0 4293  ifcif 4469  {csn 4569  cop 4575   class class class wbr 5068  {copab 5130  cmpt 5148   × cxp 5555  ccnv 5556  dom cdm 5557  cres 5559  cima 5560  Fun wfun 6351  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  +∞cpnf 10674  *cxr 10676   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  2c2 11695  0cn0 11900  [,]cicc 12744  cexp 13432  TopOpenctopn 16697  fldccnfld 20547   Cn ccn 21834   ×t ctx 22170  cnccncf 23486  vol*covol 24065  volcvol 24066  𝐿1cibl 24220  citg 24221  areacarea 25535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cc 9859  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-symdif 4221  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-omul 8109  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-acn 9373  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-ovol 24067  df-vol 24068  df-mbf 24222  df-itg1 24223  df-itg2 24224  df-ibl 24225  df-itg 24226  df-0p 24273  df-limc 24466  df-dv 24467  df-area 25536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator