Users' Mathboxes Mathbox for Jon Pennant < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  arearect Structured version   Visualization version   GIF version

Theorem arearect 39815
Description: The area of a rectangle whose sides are parallel to the coordinate axes in (ℝ × ℝ) is its width multiplied by its height. (Contributed by Jon Pennant, 19-Mar-2019.)
Hypotheses
Ref Expression
arearect.1 𝐴 ∈ ℝ
arearect.2 𝐵 ∈ ℝ
arearect.3 𝐶 ∈ ℝ
arearect.4 𝐷 ∈ ℝ
arearect.5 𝐴𝐵
arearect.6 𝐶𝐷
arearect.7 𝑆 = ((𝐴[,]𝐵) × (𝐶[,]𝐷))
Assertion
Ref Expression
arearect (area‘𝑆) = ((𝐵𝐴) · (𝐷𝐶))

Proof of Theorem arearect
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 arearect.7 . . . . 5 𝑆 = ((𝐴[,]𝐵) × (𝐶[,]𝐷))
2 arearect.1 . . . . . . 7 𝐴 ∈ ℝ
3 arearect.2 . . . . . . 7 𝐵 ∈ ℝ
4 iccssre 12812 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
52, 3, 4mp2an 690 . . . . . 6 (𝐴[,]𝐵) ⊆ ℝ
6 arearect.3 . . . . . . 7 𝐶 ∈ ℝ
7 arearect.4 . . . . . . 7 𝐷 ∈ ℝ
8 iccssre 12812 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶[,]𝐷) ⊆ ℝ)
96, 7, 8mp2an 690 . . . . . 6 (𝐶[,]𝐷) ⊆ ℝ
10 xpss12 5565 . . . . . 6 (((𝐴[,]𝐵) ⊆ ℝ ∧ (𝐶[,]𝐷) ⊆ ℝ) → ((𝐴[,]𝐵) × (𝐶[,]𝐷)) ⊆ (ℝ × ℝ))
115, 9, 10mp2an 690 . . . . 5 ((𝐴[,]𝐵) × (𝐶[,]𝐷)) ⊆ (ℝ × ℝ)
121, 11eqsstri 4001 . . . 4 𝑆 ⊆ (ℝ × ℝ)
13 iftrue 4473 . . . . . . . . . . 11 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = (𝐷𝐶))
141imaeq1i 5921 . . . . . . . . . . . . . . 15 (𝑆 “ {𝑥}) = (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥})
15 iftrue 4473 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = (𝐶[,]𝐷))
16 xpimasn 6037 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}) = (𝐶[,]𝐷))
1715, 16eqtr4d 2859 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}))
18 iffalse 4476 . . . . . . . . . . . . . . . . 17 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = ∅)
19 disjsn 4641 . . . . . . . . . . . . . . . . . 18 (((𝐴[,]𝐵) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ (𝐴[,]𝐵))
20 xpima1 6035 . . . . . . . . . . . . . . . . . 18 (((𝐴[,]𝐵) ∩ {𝑥}) = ∅ → (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}) = ∅)
2119, 20sylbir 237 . . . . . . . . . . . . . . . . 17 𝑥 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}) = ∅)
2218, 21eqtr4d 2859 . . . . . . . . . . . . . . . 16 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}))
2317, 22pm2.61i 184 . . . . . . . . . . . . . . 15 if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥})
2414, 23eqtr4i 2847 . . . . . . . . . . . . . 14 (𝑆 “ {𝑥}) = if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅)
2524fveq2i 6668 . . . . . . . . . . . . 13 (vol‘(𝑆 “ {𝑥})) = (vol‘if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅))
2615fveq2d 6669 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅)) = (vol‘(𝐶[,]𝐷)))
2725, 26syl5eq 2868 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = (vol‘(𝐶[,]𝐷)))
28 iccmbl 24161 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶[,]𝐷) ∈ dom vol)
296, 7, 28mp2an 690 . . . . . . . . . . . . . 14 (𝐶[,]𝐷) ∈ dom vol
30 mblvol 24125 . . . . . . . . . . . . . 14 ((𝐶[,]𝐷) ∈ dom vol → (vol‘(𝐶[,]𝐷)) = (vol*‘(𝐶[,]𝐷)))
3129, 30ax-mp 5 . . . . . . . . . . . . 13 (vol‘(𝐶[,]𝐷)) = (vol*‘(𝐶[,]𝐷))
32 arearect.6 . . . . . . . . . . . . . 14 𝐶𝐷
33 ovolicc 24118 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶𝐷) → (vol*‘(𝐶[,]𝐷)) = (𝐷𝐶))
346, 7, 32, 33mp3an 1457 . . . . . . . . . . . . 13 (vol*‘(𝐶[,]𝐷)) = (𝐷𝐶)
3531, 34eqtri 2844 . . . . . . . . . . . 12 (vol‘(𝐶[,]𝐷)) = (𝐷𝐶)
3627, 35syl6eq 2872 . . . . . . . . . . 11 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = (𝐷𝐶))
3713, 36eqtr4d 2859 . . . . . . . . . 10 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = (vol‘(𝑆 “ {𝑥})))
38 iffalse 4476 . . . . . . . . . . 11 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = 0)
3918fveq2d 6669 . . . . . . . . . . . . 13 𝑥 ∈ (𝐴[,]𝐵) → (vol‘if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅)) = (vol‘∅))
4025, 39syl5eq 2868 . . . . . . . . . . . 12 𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = (vol‘∅))
41 0mbl 24134 . . . . . . . . . . . . . 14 ∅ ∈ dom vol
42 mblvol 24125 . . . . . . . . . . . . . 14 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
4341, 42ax-mp 5 . . . . . . . . . . . . 13 (vol‘∅) = (vol*‘∅)
44 ovol0 24088 . . . . . . . . . . . . 13 (vol*‘∅) = 0
4543, 44eqtri 2844 . . . . . . . . . . . 12 (vol‘∅) = 0
4640, 45syl6eq 2872 . . . . . . . . . . 11 𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = 0)
4738, 46eqtr4d 2859 . . . . . . . . . 10 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = (vol‘(𝑆 “ {𝑥})))
4837, 47pm2.61i 184 . . . . . . . . 9 if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = (vol‘(𝑆 “ {𝑥}))
4948eqcomi 2830 . . . . . . . 8 (vol‘(𝑆 “ {𝑥})) = if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0)
5049a1i 11 . . . . . . 7 (𝑥 ∈ ℝ → (vol‘(𝑆 “ {𝑥})) = if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0))
517, 6resubcli 10942 . . . . . . . 8 (𝐷𝐶) ∈ ℝ
52 0re 10637 . . . . . . . 8 0 ∈ ℝ
5351, 52ifcli 4513 . . . . . . 7 if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) ∈ ℝ
5450, 53eqeltrdi 2921 . . . . . 6 (𝑥 ∈ ℝ → (vol‘(𝑆 “ {𝑥})) ∈ ℝ)
55 volf 24124 . . . . . . . 8 vol:dom vol⟶(0[,]+∞)
56 ffun 6512 . . . . . . . 8 (vol:dom vol⟶(0[,]+∞) → Fun vol)
5755, 56ax-mp 5 . . . . . . 7 Fun vol
5829, 41ifcli 4513 . . . . . . . 8 if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) ∈ dom vol
5924, 58eqeltri 2909 . . . . . . 7 (𝑆 “ {𝑥}) ∈ dom vol
60 fvimacnv 6818 . . . . . . 7 ((Fun vol ∧ (𝑆 “ {𝑥}) ∈ dom vol) → ((vol‘(𝑆 “ {𝑥})) ∈ ℝ ↔ (𝑆 “ {𝑥}) ∈ (vol “ ℝ)))
6157, 59, 60mp2an 690 . . . . . 6 ((vol‘(𝑆 “ {𝑥})) ∈ ℝ ↔ (𝑆 “ {𝑥}) ∈ (vol “ ℝ))
6254, 61sylib 220 . . . . 5 (𝑥 ∈ ℝ → (𝑆 “ {𝑥}) ∈ (vol “ ℝ))
6362rgen 3148 . . . 4 𝑥 ∈ ℝ (𝑆 “ {𝑥}) ∈ (vol “ ℝ)
645a1i 11 . . . . . 6 (0 ∈ ℝ → (𝐴[,]𝐵) ⊆ ℝ)
65 rembl 24135 . . . . . . 7 ℝ ∈ dom vol
6665a1i 11 . . . . . 6 (0 ∈ ℝ → ℝ ∈ dom vol)
6736, 51eqeltrdi 2921 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) ∈ ℝ)
6867adantl 484 . . . . . 6 ((0 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (vol‘(𝑆 “ {𝑥})) ∈ ℝ)
69 eldifn 4104 . . . . . . . 8 (𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
7069, 46syl 17 . . . . . . 7 (𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)) → (vol‘(𝑆 “ {𝑥})) = 0)
7170adantl 484 . . . . . 6 ((0 ∈ ℝ ∧ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))) → (vol‘(𝑆 “ {𝑥})) = 0)
7236mpteq2ia 5150 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ (vol‘(𝑆 “ {𝑥}))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶))
7351recni 10649 . . . . . . . . . 10 (𝐷𝐶) ∈ ℂ
74 ax-resscn 10588 . . . . . . . . . . 11 ℝ ⊆ ℂ
755, 74sstri 3976 . . . . . . . . . 10 (𝐴[,]𝐵) ⊆ ℂ
76 ssid 3989 . . . . . . . . . 10 ℂ ⊆ ℂ
77 cncfmptc 23513 . . . . . . . . . 10 (((𝐷𝐶) ∈ ℂ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
7873, 75, 76, 77mp3an 1457 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ ((𝐴[,]𝐵)–cn→ℂ)
79 cniccibl 24435 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ 𝐿1)
802, 3, 78, 79mp3an 1457 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ 𝐿1
8172, 80eqeltri 2909 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1
8281a1i 11 . . . . . 6 (0 ∈ ℝ → (𝑥 ∈ (𝐴[,]𝐵) ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1)
8364, 66, 68, 71, 82iblss2 24400 . . . . 5 (0 ∈ ℝ → (𝑥 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1)
8452, 83ax-mp 5 . . . 4 (𝑥 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1
85 dmarea 25529 . . . 4 (𝑆 ∈ dom area ↔ (𝑆 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝑆 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1))
8612, 63, 84, 85mpbir3an 1337 . . 3 𝑆 ∈ dom area
87 areaval 25536 . . 3 (𝑆 ∈ dom area → (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥)
8886, 87ax-mp 5 . 2 (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥
89 itgeq2 24372 . . . 4 (∀𝑥 ∈ ℝ (vol‘(𝑆 “ {𝑥})) = if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) → ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥)
9089, 50mprg 3152 . . 3 ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥
91 iccmbl 24161 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ dom vol)
922, 3, 91mp2an 690 . . . . 5 (𝐴[,]𝐵) ∈ dom vol
93 mblvol 24125 . . . . . . . 8 ((𝐴[,]𝐵) ∈ dom vol → (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵)))
9492, 93ax-mp 5 . . . . . . 7 (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵))
95 arearect.5 . . . . . . . 8 𝐴𝐵
96 ovolicc 24118 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵𝐴))
972, 3, 95, 96mp3an 1457 . . . . . . 7 (vol*‘(𝐴[,]𝐵)) = (𝐵𝐴)
9894, 97eqtri 2844 . . . . . 6 (vol‘(𝐴[,]𝐵)) = (𝐵𝐴)
993, 2resubcli 10942 . . . . . 6 (𝐵𝐴) ∈ ℝ
10098, 99eqeltri 2909 . . . . 5 (vol‘(𝐴[,]𝐵)) ∈ ℝ
101 itgconst 24413 . . . . 5 (((𝐴[,]𝐵) ∈ dom vol ∧ (vol‘(𝐴[,]𝐵)) ∈ ℝ ∧ (𝐷𝐶) ∈ ℂ) → ∫(𝐴[,]𝐵)(𝐷𝐶) d𝑥 = ((𝐷𝐶) · (vol‘(𝐴[,]𝐵))))
10292, 100, 73, 101mp3an 1457 . . . 4 ∫(𝐴[,]𝐵)(𝐷𝐶) d𝑥 = ((𝐷𝐶) · (vol‘(𝐴[,]𝐵)))
103 itgss2 24407 . . . . 5 ((𝐴[,]𝐵) ⊆ ℝ → ∫(𝐴[,]𝐵)(𝐷𝐶) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥)
1045, 103ax-mp 5 . . . 4 ∫(𝐴[,]𝐵)(𝐷𝐶) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥
10598oveq2i 7161 . . . 4 ((𝐷𝐶) · (vol‘(𝐴[,]𝐵))) = ((𝐷𝐶) · (𝐵𝐴))
106102, 104, 1053eqtr3i 2852 . . 3 ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥 = ((𝐷𝐶) · (𝐵𝐴))
10790, 106eqtri 2844 . 2 ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥 = ((𝐷𝐶) · (𝐵𝐴))
10899recni 10649 . . 3 (𝐵𝐴) ∈ ℂ
10973, 108mulcomi 10643 . 2 ((𝐷𝐶) · (𝐵𝐴)) = ((𝐵𝐴) · (𝐷𝐶))
11088, 107, 1093eqtri 2848 1 (area‘𝑆) = ((𝐵𝐴) · (𝐷𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208   = wceq 1533  wcel 2110  wral 3138  cdif 3933  cin 3935  wss 3936  c0 4291  ifcif 4467  {csn 4561   class class class wbr 5059  cmpt 5139   × cxp 5548  ccnv 5549  dom cdm 5550  cima 5553  Fun wfun 6344  wf 6346  cfv 6350  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531   · cmul 10536  +∞cpnf 10666  cle 10670  cmin 10864  [,]cicc 12735  cnccncf 23478  vol*covol 24057  volcvol 24058  𝐿1cibl 24212  citg 24213  areacarea 25527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cc 9851  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-disj 5025  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-ofr 7404  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-acn 9365  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cn 21829  df-cnp 21830  df-cmp 21989  df-tx 22164  df-hmeo 22357  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-ovol 24059  df-vol 24060  df-mbf 24214  df-itg1 24215  df-itg2 24216  df-ibl 24217  df-itg 24218  df-0p 24265  df-area 25528
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator