Users' Mathboxes Mathbox for Jon Pennant < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  arearect Structured version   Visualization version   GIF version

Theorem arearect 38118
Description: The area of a rectangle whose sides are parallel to the coordinate axes in (ℝ × ℝ) is its width multiplied by its height. (Contributed by Jon Pennant, 19-Mar-2019.)
Hypotheses
Ref Expression
arearect.1 𝐴 ∈ ℝ
arearect.2 𝐵 ∈ ℝ
arearect.3 𝐶 ∈ ℝ
arearect.4 𝐷 ∈ ℝ
arearect.5 𝐴𝐵
arearect.6 𝐶𝐷
arearect.7 𝑆 = ((𝐴[,]𝐵) × (𝐶[,]𝐷))
Assertion
Ref Expression
arearect (area‘𝑆) = ((𝐵𝐴) · (𝐷𝐶))

Proof of Theorem arearect
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 arearect.7 . . . . 5 𝑆 = ((𝐴[,]𝐵) × (𝐶[,]𝐷))
2 arearect.1 . . . . . . 7 𝐴 ∈ ℝ
3 arearect.2 . . . . . . 7 𝐵 ∈ ℝ
4 iccssre 12293 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
52, 3, 4mp2an 708 . . . . . 6 (𝐴[,]𝐵) ⊆ ℝ
6 arearect.3 . . . . . . 7 𝐶 ∈ ℝ
7 arearect.4 . . . . . . 7 𝐷 ∈ ℝ
8 iccssre 12293 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶[,]𝐷) ⊆ ℝ)
96, 7, 8mp2an 708 . . . . . 6 (𝐶[,]𝐷) ⊆ ℝ
10 xpss12 5158 . . . . . 6 (((𝐴[,]𝐵) ⊆ ℝ ∧ (𝐶[,]𝐷) ⊆ ℝ) → ((𝐴[,]𝐵) × (𝐶[,]𝐷)) ⊆ (ℝ × ℝ))
115, 9, 10mp2an 708 . . . . 5 ((𝐴[,]𝐵) × (𝐶[,]𝐷)) ⊆ (ℝ × ℝ)
121, 11eqsstri 3668 . . . 4 𝑆 ⊆ (ℝ × ℝ)
13 iftrue 4125 . . . . . . . . . . 11 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = (𝐷𝐶))
141imaeq1i 5498 . . . . . . . . . . . . . . 15 (𝑆 “ {𝑥}) = (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥})
15 iftrue 4125 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = (𝐶[,]𝐷))
16 xpimasn 5614 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}) = (𝐶[,]𝐷))
1715, 16eqtr4d 2688 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}))
18 iffalse 4128 . . . . . . . . . . . . . . . . 17 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = ∅)
19 disjsn 4278 . . . . . . . . . . . . . . . . . 18 (((𝐴[,]𝐵) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ (𝐴[,]𝐵))
20 xpima1 5612 . . . . . . . . . . . . . . . . . 18 (((𝐴[,]𝐵) ∩ {𝑥}) = ∅ → (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}) = ∅)
2119, 20sylbir 225 . . . . . . . . . . . . . . . . 17 𝑥 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}) = ∅)
2218, 21eqtr4d 2688 . . . . . . . . . . . . . . . 16 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}))
2317, 22pm2.61i 176 . . . . . . . . . . . . . . 15 if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥})
2414, 23eqtr4i 2676 . . . . . . . . . . . . . 14 (𝑆 “ {𝑥}) = if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅)
2524fveq2i 6232 . . . . . . . . . . . . 13 (vol‘(𝑆 “ {𝑥})) = (vol‘if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅))
2615fveq2d 6233 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅)) = (vol‘(𝐶[,]𝐷)))
2725, 26syl5eq 2697 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = (vol‘(𝐶[,]𝐷)))
28 iccmbl 23380 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶[,]𝐷) ∈ dom vol)
296, 7, 28mp2an 708 . . . . . . . . . . . . . 14 (𝐶[,]𝐷) ∈ dom vol
30 mblvol 23344 . . . . . . . . . . . . . 14 ((𝐶[,]𝐷) ∈ dom vol → (vol‘(𝐶[,]𝐷)) = (vol*‘(𝐶[,]𝐷)))
3129, 30ax-mp 5 . . . . . . . . . . . . 13 (vol‘(𝐶[,]𝐷)) = (vol*‘(𝐶[,]𝐷))
32 arearect.6 . . . . . . . . . . . . . 14 𝐶𝐷
33 ovolicc 23337 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶𝐷) → (vol*‘(𝐶[,]𝐷)) = (𝐷𝐶))
346, 7, 32, 33mp3an 1464 . . . . . . . . . . . . 13 (vol*‘(𝐶[,]𝐷)) = (𝐷𝐶)
3531, 34eqtri 2673 . . . . . . . . . . . 12 (vol‘(𝐶[,]𝐷)) = (𝐷𝐶)
3627, 35syl6eq 2701 . . . . . . . . . . 11 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = (𝐷𝐶))
3713, 36eqtr4d 2688 . . . . . . . . . 10 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = (vol‘(𝑆 “ {𝑥})))
38 iffalse 4128 . . . . . . . . . . 11 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = 0)
3918fveq2d 6233 . . . . . . . . . . . . 13 𝑥 ∈ (𝐴[,]𝐵) → (vol‘if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅)) = (vol‘∅))
4025, 39syl5eq 2697 . . . . . . . . . . . 12 𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = (vol‘∅))
41 0mbl 23353 . . . . . . . . . . . . . 14 ∅ ∈ dom vol
42 mblvol 23344 . . . . . . . . . . . . . 14 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
4341, 42ax-mp 5 . . . . . . . . . . . . 13 (vol‘∅) = (vol*‘∅)
44 ovol0 23307 . . . . . . . . . . . . 13 (vol*‘∅) = 0
4543, 44eqtri 2673 . . . . . . . . . . . 12 (vol‘∅) = 0
4640, 45syl6eq 2701 . . . . . . . . . . 11 𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = 0)
4738, 46eqtr4d 2688 . . . . . . . . . 10 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = (vol‘(𝑆 “ {𝑥})))
4837, 47pm2.61i 176 . . . . . . . . 9 if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = (vol‘(𝑆 “ {𝑥}))
4948eqcomi 2660 . . . . . . . 8 (vol‘(𝑆 “ {𝑥})) = if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0)
5049a1i 11 . . . . . . 7 (𝑥 ∈ ℝ → (vol‘(𝑆 “ {𝑥})) = if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0))
517, 6resubcli 10381 . . . . . . . 8 (𝐷𝐶) ∈ ℝ
52 0re 10078 . . . . . . . 8 0 ∈ ℝ
5351, 52keepel 4188 . . . . . . 7 if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) ∈ ℝ
5450, 53syl6eqel 2738 . . . . . 6 (𝑥 ∈ ℝ → (vol‘(𝑆 “ {𝑥})) ∈ ℝ)
55 volf 23343 . . . . . . . 8 vol:dom vol⟶(0[,]+∞)
56 ffun 6086 . . . . . . . 8 (vol:dom vol⟶(0[,]+∞) → Fun vol)
5755, 56ax-mp 5 . . . . . . 7 Fun vol
5829, 41keepel 4188 . . . . . . . 8 if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) ∈ dom vol
5924, 58eqeltri 2726 . . . . . . 7 (𝑆 “ {𝑥}) ∈ dom vol
60 fvimacnv 6372 . . . . . . 7 ((Fun vol ∧ (𝑆 “ {𝑥}) ∈ dom vol) → ((vol‘(𝑆 “ {𝑥})) ∈ ℝ ↔ (𝑆 “ {𝑥}) ∈ (vol “ ℝ)))
6157, 59, 60mp2an 708 . . . . . 6 ((vol‘(𝑆 “ {𝑥})) ∈ ℝ ↔ (𝑆 “ {𝑥}) ∈ (vol “ ℝ))
6254, 61sylib 208 . . . . 5 (𝑥 ∈ ℝ → (𝑆 “ {𝑥}) ∈ (vol “ ℝ))
6362rgen 2951 . . . 4 𝑥 ∈ ℝ (𝑆 “ {𝑥}) ∈ (vol “ ℝ)
645a1i 11 . . . . . 6 (0 ∈ ℝ → (𝐴[,]𝐵) ⊆ ℝ)
65 rembl 23354 . . . . . . 7 ℝ ∈ dom vol
6665a1i 11 . . . . . 6 (0 ∈ ℝ → ℝ ∈ dom vol)
6736, 51syl6eqel 2738 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) ∈ ℝ)
6867adantl 481 . . . . . 6 ((0 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (vol‘(𝑆 “ {𝑥})) ∈ ℝ)
69 eldifn 3766 . . . . . . . 8 (𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
7069, 46syl 17 . . . . . . 7 (𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)) → (vol‘(𝑆 “ {𝑥})) = 0)
7170adantl 481 . . . . . 6 ((0 ∈ ℝ ∧ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))) → (vol‘(𝑆 “ {𝑥})) = 0)
7236mpteq2ia 4773 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ (vol‘(𝑆 “ {𝑥}))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶))
7351recni 10090 . . . . . . . . . 10 (𝐷𝐶) ∈ ℂ
74 ax-resscn 10031 . . . . . . . . . . 11 ℝ ⊆ ℂ
755, 74sstri 3645 . . . . . . . . . 10 (𝐴[,]𝐵) ⊆ ℂ
76 ssid 3657 . . . . . . . . . 10 ℂ ⊆ ℂ
77 cncfmptc 22761 . . . . . . . . . 10 (((𝐷𝐶) ∈ ℂ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
7873, 75, 76, 77mp3an 1464 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ ((𝐴[,]𝐵)–cn→ℂ)
79 cniccibl 23652 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ 𝐿1)
802, 3, 78, 79mp3an 1464 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ 𝐿1
8172, 80eqeltri 2726 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1
8281a1i 11 . . . . . 6 (0 ∈ ℝ → (𝑥 ∈ (𝐴[,]𝐵) ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1)
8364, 66, 68, 71, 82iblss2 23617 . . . . 5 (0 ∈ ℝ → (𝑥 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1)
8452, 83ax-mp 5 . . . 4 (𝑥 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1
85 dmarea 24729 . . . 4 (𝑆 ∈ dom area ↔ (𝑆 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝑆 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1))
8612, 63, 84, 85mpbir3an 1263 . . 3 𝑆 ∈ dom area
87 areaval 24736 . . 3 (𝑆 ∈ dom area → (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥)
8886, 87ax-mp 5 . 2 (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥
89 itgeq2 23589 . . . 4 (∀𝑥 ∈ ℝ (vol‘(𝑆 “ {𝑥})) = if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) → ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥)
9089, 50mprg 2955 . . 3 ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥
91 iccmbl 23380 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ dom vol)
922, 3, 91mp2an 708 . . . . 5 (𝐴[,]𝐵) ∈ dom vol
93 mblvol 23344 . . . . . . . 8 ((𝐴[,]𝐵) ∈ dom vol → (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵)))
9492, 93ax-mp 5 . . . . . . 7 (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵))
95 arearect.5 . . . . . . . 8 𝐴𝐵
96 ovolicc 23337 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵𝐴))
972, 3, 95, 96mp3an 1464 . . . . . . 7 (vol*‘(𝐴[,]𝐵)) = (𝐵𝐴)
9894, 97eqtri 2673 . . . . . 6 (vol‘(𝐴[,]𝐵)) = (𝐵𝐴)
993, 2resubcli 10381 . . . . . 6 (𝐵𝐴) ∈ ℝ
10098, 99eqeltri 2726 . . . . 5 (vol‘(𝐴[,]𝐵)) ∈ ℝ
101 itgconst 23630 . . . . 5 (((𝐴[,]𝐵) ∈ dom vol ∧ (vol‘(𝐴[,]𝐵)) ∈ ℝ ∧ (𝐷𝐶) ∈ ℂ) → ∫(𝐴[,]𝐵)(𝐷𝐶) d𝑥 = ((𝐷𝐶) · (vol‘(𝐴[,]𝐵))))
10292, 100, 73, 101mp3an 1464 . . . 4 ∫(𝐴[,]𝐵)(𝐷𝐶) d𝑥 = ((𝐷𝐶) · (vol‘(𝐴[,]𝐵)))
103 itgss2 23624 . . . . 5 ((𝐴[,]𝐵) ⊆ ℝ → ∫(𝐴[,]𝐵)(𝐷𝐶) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥)
1045, 103ax-mp 5 . . . 4 ∫(𝐴[,]𝐵)(𝐷𝐶) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥
10598oveq2i 6701 . . . 4 ((𝐷𝐶) · (vol‘(𝐴[,]𝐵))) = ((𝐷𝐶) · (𝐵𝐴))
106102, 104, 1053eqtr3i 2681 . . 3 ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥 = ((𝐷𝐶) · (𝐵𝐴))
10790, 106eqtri 2673 . 2 ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥 = ((𝐷𝐶) · (𝐵𝐴))
10899recni 10090 . . 3 (𝐵𝐴) ∈ ℂ
10973, 108mulcomi 10084 . 2 ((𝐷𝐶) · (𝐵𝐴)) = ((𝐵𝐴) · (𝐷𝐶))
11088, 107, 1093eqtri 2677 1 (area‘𝑆) = ((𝐵𝐴) · (𝐷𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196   = wceq 1523  wcel 2030  wral 2941  cdif 3604  cin 3606  wss 3607  c0 3948  ifcif 4119  {csn 4210   class class class wbr 4685  cmpt 4762   × cxp 5141  ccnv 5142  dom cdm 5143  cima 5146  Fun wfun 5920  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974   · cmul 9979  +∞cpnf 10109  cle 10113  cmin 10304  [,]cicc 12216  cnccncf 22726  vol*covol 23277  volcvol 23278  𝐿1cibl 23431  citg 23432  areacarea 24727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cn 21079  df-cnp 21080  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-ovol 23279  df-vol 23280  df-mbf 23433  df-itg1 23434  df-itg2 23435  df-ibl 23436  df-itg 23437  df-0p 23482  df-area 24728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator