MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  argregt0 Structured version   Visualization version   GIF version

Theorem argregt0 25195
Description: Closure of the argument of a complex number with positive real part. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
argregt0 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)))

Proof of Theorem argregt0
StepHypRef Expression
1 recl 14471 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
2 gt0ne0 11107 . . . . . 6 (((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ≠ 0)
31, 2sylan 582 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ≠ 0)
4 fveq2 6672 . . . . . . 7 (𝐴 = 0 → (ℜ‘𝐴) = (ℜ‘0))
5 re0 14513 . . . . . . 7 (ℜ‘0) = 0
64, 5syl6eq 2874 . . . . . 6 (𝐴 = 0 → (ℜ‘𝐴) = 0)
76necon3i 3050 . . . . 5 ((ℜ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
83, 7syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 𝐴 ≠ 0)
9 logcl 25154 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
108, 9syldan 593 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (log‘𝐴) ∈ ℂ)
1110imcld 14556 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
12 coshalfpi 25057 . . . . . 6 (cos‘(π / 2)) = 0
13 simpr 487 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘𝐴))
14 abscl 14640 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1514adantr 483 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘𝐴) ∈ ℝ)
1615recnd 10671 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘𝐴) ∈ ℂ)
1716mul01d 10841 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘𝐴) · 0) = 0)
18 simpl 485 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
19 absrpcl 14650 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
208, 19syldan 593 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘𝐴) ∈ ℝ+)
2120rpne0d 12439 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘𝐴) ≠ 0)
2218, 16, 21divcld 11418 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (𝐴 / (abs‘𝐴)) ∈ ℂ)
2315, 22remul2d 14588 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴)))))
2418, 16, 21divcan2d 11420 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘𝐴) · (𝐴 / (abs‘𝐴))) = 𝐴)
2524fveq2d 6676 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = (ℜ‘𝐴))
2623, 25eqtr3d 2860 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴)))) = (ℜ‘𝐴))
2713, 17, 263brtr4d 5100 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘𝐴) · 0) < ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴)))))
28 0re 10645 . . . . . . . . . . . 12 0 ∈ ℝ
2928a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 ∈ ℝ)
3022recld 14555 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 / (abs‘𝐴))) ∈ ℝ)
3129, 30, 20ltmul2d 12476 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (0 < (ℜ‘(𝐴 / (abs‘𝐴))) ↔ ((abs‘𝐴) · 0) < ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴))))))
3227, 31mpbird 259 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(𝐴 / (abs‘𝐴))))
33 efiarg 25192 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
348, 33syldan 593 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
3534fveq2d 6676 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))) = (ℜ‘(𝐴 / (abs‘𝐴))))
3632, 35breqtrrd 5096 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
37 recosval 15491 . . . . . . . . 9 ((ℑ‘(log‘𝐴)) ∈ ℝ → (cos‘(ℑ‘(log‘𝐴))) = (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
3811, 37syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (cos‘(ℑ‘(log‘𝐴))) = (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
3936, 38breqtrrd 5096 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (cos‘(ℑ‘(log‘𝐴))))
40 fveq2 6672 . . . . . . . . 9 ((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴))))
4140a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴)))))
4211recnd 10671 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℂ)
43 cosneg 15502 . . . . . . . . . 10 ((ℑ‘(log‘𝐴)) ∈ ℂ → (cos‘-(ℑ‘(log‘𝐴))) = (cos‘(ℑ‘(log‘𝐴))))
4442, 43syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (cos‘-(ℑ‘(log‘𝐴))) = (cos‘(ℑ‘(log‘𝐴))))
45 fveqeq2 6681 . . . . . . . . 9 ((abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)) → ((cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴))) ↔ (cos‘-(ℑ‘(log‘𝐴))) = (cos‘(ℑ‘(log‘𝐴)))))
4644, 45syl5ibrcom 249 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴)))))
4711absord 14777 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) ∨ (abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴))))
4841, 46, 47mpjaod 856 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴))))
4939, 48breqtrrd 5096 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (cos‘(abs‘(ℑ‘(log‘𝐴)))))
5012, 49eqbrtrid 5103 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (cos‘(π / 2)) < (cos‘(abs‘(ℑ‘(log‘𝐴)))))
5142abscld 14798 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ∈ ℝ)
5242absge0d 14806 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 ≤ (abs‘(ℑ‘(log‘𝐴))))
53 logimcl 25155 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
548, 53syldan 593 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
5554simpld 497 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → -π < (ℑ‘(log‘𝐴)))
56 pire 25046 . . . . . . . . . . 11 π ∈ ℝ
5756renegcli 10949 . . . . . . . . . 10 -π ∈ ℝ
58 ltle 10731 . . . . . . . . . 10 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
5957, 11, 58sylancr 589 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
6055, 59mpd 15 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴)))
6154simprd 498 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ π)
62 absle 14677 . . . . . . . . 9 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
6311, 56, 62sylancl 588 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
6460, 61, 63mpbir2and 711 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ≤ π)
6528, 56elicc2i 12805 . . . . . . 7 ((abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π) ↔ ((abs‘(ℑ‘(log‘𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘(log‘𝐴))) ∧ (abs‘(ℑ‘(log‘𝐴))) ≤ π))
6651, 52, 64, 65syl3anbrc 1339 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π))
67 halfpire 25052 . . . . . . 7 (π / 2) ∈ ℝ
68 pirp 25049 . . . . . . . 8 π ∈ ℝ+
69 rphalfcl 12419 . . . . . . . 8 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
70 rpge0 12405 . . . . . . . 8 ((π / 2) ∈ ℝ+ → 0 ≤ (π / 2))
7168, 69, 70mp2b 10 . . . . . . 7 0 ≤ (π / 2)
72 rphalflt 12421 . . . . . . . . 9 (π ∈ ℝ+ → (π / 2) < π)
7368, 72ax-mp 5 . . . . . . . 8 (π / 2) < π
7467, 56, 73ltleii 10765 . . . . . . 7 (π / 2) ≤ π
7528, 56elicc2i 12805 . . . . . . 7 ((π / 2) ∈ (0[,]π) ↔ ((π / 2) ∈ ℝ ∧ 0 ≤ (π / 2) ∧ (π / 2) ≤ π))
7667, 71, 74, 75mpbir3an 1337 . . . . . 6 (π / 2) ∈ (0[,]π)
77 cosord 25118 . . . . . 6 (((abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π) ∧ (π / 2) ∈ (0[,]π)) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (cos‘(π / 2)) < (cos‘(abs‘(ℑ‘(log‘𝐴))))))
7866, 76, 77sylancl 588 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (cos‘(π / 2)) < (cos‘(abs‘(ℑ‘(log‘𝐴))))))
7950, 78mpbird 259 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) < (π / 2))
80 abslt 14676 . . . . 5 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (-(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2))))
8111, 67, 80sylancl 588 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (-(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2))))
8279, 81mpbid 234 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (-(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2)))
8382simpld 497 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → -(π / 2) < (ℑ‘(log‘𝐴)))
8482simprd 498 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) < (π / 2))
8567renegcli 10949 . . . 4 -(π / 2) ∈ ℝ
8685rexri 10701 . . 3 -(π / 2) ∈ ℝ*
8767rexri 10701 . . 3 (π / 2) ∈ ℝ*
88 elioo2 12782 . . 3 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2))))
8986, 87, 88mp2an 690 . 2 ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2)))
9011, 83, 84, 89syl3anbrc 1339 1 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  ici 10541   · cmul 10544  *cxr 10676   < clt 10677  cle 10678  -cneg 10873   / cdiv 11299  2c2 11695  +crp 12392  (,)cioo 12741  [,]cicc 12744  cre 14458  cim 14459  abscabs 14595  expce 15417  cosccos 15420  πcpi 15422  logclog 25140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-log 25142
This theorem is referenced by:  logcnlem4  25230  atanlogsublem  25495
  Copyright terms: Public domain W3C validator