MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  argregt0 Structured version   Visualization version   GIF version

Theorem argregt0 24260
Description: Closure of the argument of a complex number with positive real part. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
argregt0 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)))

Proof of Theorem argregt0
StepHypRef Expression
1 recl 13784 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
2 gt0ne0 10437 . . . . . 6 (((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ≠ 0)
31, 2sylan 488 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ≠ 0)
4 fveq2 6148 . . . . . . 7 (𝐴 = 0 → (ℜ‘𝐴) = (ℜ‘0))
5 re0 13826 . . . . . . 7 (ℜ‘0) = 0
64, 5syl6eq 2671 . . . . . 6 (𝐴 = 0 → (ℜ‘𝐴) = 0)
76necon3i 2822 . . . . 5 ((ℜ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
83, 7syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 𝐴 ≠ 0)
9 logcl 24219 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
108, 9syldan 487 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (log‘𝐴) ∈ ℂ)
1110imcld 13869 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
12 coshalfpi 24125 . . . . . 6 (cos‘(π / 2)) = 0
13 simpr 477 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘𝐴))
14 abscl 13952 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1514adantr 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘𝐴) ∈ ℝ)
1615recnd 10012 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘𝐴) ∈ ℂ)
1716mul01d 10179 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘𝐴) · 0) = 0)
18 simpl 473 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
19 absrpcl 13962 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
208, 19syldan 487 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘𝐴) ∈ ℝ+)
2120rpne0d 11821 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘𝐴) ≠ 0)
2218, 16, 21divcld 10745 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (𝐴 / (abs‘𝐴)) ∈ ℂ)
2315, 22remul2d 13901 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴)))))
2418, 16, 21divcan2d 10747 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘𝐴) · (𝐴 / (abs‘𝐴))) = 𝐴)
2524fveq2d 6152 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = (ℜ‘𝐴))
2623, 25eqtr3d 2657 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴)))) = (ℜ‘𝐴))
2713, 17, 263brtr4d 4645 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘𝐴) · 0) < ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴)))))
28 0re 9984 . . . . . . . . . . . 12 0 ∈ ℝ
2928a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 ∈ ℝ)
3022recld 13868 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 / (abs‘𝐴))) ∈ ℝ)
3129, 30, 20ltmul2d 11858 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (0 < (ℜ‘(𝐴 / (abs‘𝐴))) ↔ ((abs‘𝐴) · 0) < ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴))))))
3227, 31mpbird 247 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(𝐴 / (abs‘𝐴))))
33 efiarg 24257 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
348, 33syldan 487 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
3534fveq2d 6152 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))) = (ℜ‘(𝐴 / (abs‘𝐴))))
3632, 35breqtrrd 4641 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
37 recosval 14791 . . . . . . . . 9 ((ℑ‘(log‘𝐴)) ∈ ℝ → (cos‘(ℑ‘(log‘𝐴))) = (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
3811, 37syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (cos‘(ℑ‘(log‘𝐴))) = (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
3936, 38breqtrrd 4641 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (cos‘(ℑ‘(log‘𝐴))))
40 fveq2 6148 . . . . . . . . 9 ((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴))))
4140a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴)))))
4211recnd 10012 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℂ)
43 cosneg 14802 . . . . . . . . . 10 ((ℑ‘(log‘𝐴)) ∈ ℂ → (cos‘-(ℑ‘(log‘𝐴))) = (cos‘(ℑ‘(log‘𝐴))))
4442, 43syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (cos‘-(ℑ‘(log‘𝐴))) = (cos‘(ℑ‘(log‘𝐴))))
45 fveq2 6148 . . . . . . . . . 10 ((abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘-(ℑ‘(log‘𝐴))))
4645eqeq1d 2623 . . . . . . . . 9 ((abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)) → ((cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴))) ↔ (cos‘-(ℑ‘(log‘𝐴))) = (cos‘(ℑ‘(log‘𝐴)))))
4744, 46syl5ibrcom 237 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴)))))
4811absord 14088 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) ∨ (abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴))))
4941, 47, 48mpjaod 396 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴))))
5039, 49breqtrrd 4641 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (cos‘(abs‘(ℑ‘(log‘𝐴)))))
5112, 50syl5eqbr 4648 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (cos‘(π / 2)) < (cos‘(abs‘(ℑ‘(log‘𝐴)))))
52 abscl 13952 . . . . . . . 8 ((ℑ‘(log‘𝐴)) ∈ ℂ → (abs‘(ℑ‘(log‘𝐴))) ∈ ℝ)
5342, 52syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ∈ ℝ)
5442absge0d 14117 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 ≤ (abs‘(ℑ‘(log‘𝐴))))
55 logimcl 24220 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
568, 55syldan 487 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
5756simpld 475 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → -π < (ℑ‘(log‘𝐴)))
58 pire 24114 . . . . . . . . . . 11 π ∈ ℝ
5958renegcli 10286 . . . . . . . . . 10 -π ∈ ℝ
60 ltle 10070 . . . . . . . . . 10 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
6159, 11, 60sylancr 694 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
6257, 61mpd 15 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴)))
6356simprd 479 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ π)
64 absle 13989 . . . . . . . . 9 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
6511, 58, 64sylancl 693 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
6662, 63, 65mpbir2and 956 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ≤ π)
6728, 58elicc2i 12181 . . . . . . 7 ((abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π) ↔ ((abs‘(ℑ‘(log‘𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘(log‘𝐴))) ∧ (abs‘(ℑ‘(log‘𝐴))) ≤ π))
6853, 54, 66, 67syl3anbrc 1244 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π))
69 halfpire 24120 . . . . . . 7 (π / 2) ∈ ℝ
70 pirp 24117 . . . . . . . 8 π ∈ ℝ+
71 rphalfcl 11802 . . . . . . . 8 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
72 rpge0 11789 . . . . . . . 8 ((π / 2) ∈ ℝ+ → 0 ≤ (π / 2))
7370, 71, 72mp2b 10 . . . . . . 7 0 ≤ (π / 2)
74 rphalflt 11804 . . . . . . . . 9 (π ∈ ℝ+ → (π / 2) < π)
7570, 74ax-mp 5 . . . . . . . 8 (π / 2) < π
7669, 58, 75ltleii 10104 . . . . . . 7 (π / 2) ≤ π
7728, 58elicc2i 12181 . . . . . . 7 ((π / 2) ∈ (0[,]π) ↔ ((π / 2) ∈ ℝ ∧ 0 ≤ (π / 2) ∧ (π / 2) ≤ π))
7869, 73, 76, 77mpbir3an 1242 . . . . . 6 (π / 2) ∈ (0[,]π)
79 cosord 24182 . . . . . 6 (((abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π) ∧ (π / 2) ∈ (0[,]π)) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (cos‘(π / 2)) < (cos‘(abs‘(ℑ‘(log‘𝐴))))))
8068, 78, 79sylancl 693 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (cos‘(π / 2)) < (cos‘(abs‘(ℑ‘(log‘𝐴))))))
8151, 80mpbird 247 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) < (π / 2))
82 abslt 13988 . . . . 5 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (-(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2))))
8311, 69, 82sylancl 693 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (-(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2))))
8481, 83mpbid 222 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (-(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2)))
8584simpld 475 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → -(π / 2) < (ℑ‘(log‘𝐴)))
8684simprd 479 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) < (π / 2))
8769renegcli 10286 . . . 4 -(π / 2) ∈ ℝ
8887rexri 10041 . . 3 -(π / 2) ∈ ℝ*
8969rexri 10041 . . 3 (π / 2) ∈ ℝ*
90 elioo2 12158 . . 3 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2))))
9188, 89, 90mp2an 707 . 2 ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2)))
9211, 85, 86, 91syl3anbrc 1244 1 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4613  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  ici 9882   · cmul 9885  *cxr 10017   < clt 10018  cle 10019  -cneg 10211   / cdiv 10628  2c2 11014  +crp 11776  (,)cioo 12117  [,]cicc 12120  cre 13771  cim 13772  abscabs 13908  expce 14717  cosccos 14720  πcpi 14722  logclog 24205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-sin 14725  df-cos 14726  df-pi 14728  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537  df-log 24207
This theorem is referenced by:  logcnlem4  24291  atanlogsublem  24542
  Copyright terms: Public domain W3C validator