MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  args Structured version   Visualization version   GIF version

Theorem args 5491
Description: Two ways to express the class of unique-valued arguments of 𝐹, which is the same as the domain of 𝐹 whenever 𝐹 is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg 𝐹 " for this class (for which we have no separate notation). Observe the resemblance to the alternate definition dffv4 6186 of function value, which is based on the idea in Quine's definition. (Contributed by NM, 8-May-2005.)
Assertion
Ref Expression
args {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}
Distinct variable groups:   𝑦,𝐹   𝑥,𝑦
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem args
StepHypRef Expression
1 vex 3201 . . . . . 6 𝑥 ∈ V
2 imasng 5485 . . . . . 6 (𝑥 ∈ V → (𝐹 “ {𝑥}) = {𝑦𝑥𝐹𝑦})
31, 2ax-mp 5 . . . . 5 (𝐹 “ {𝑥}) = {𝑦𝑥𝐹𝑦}
43eqeq1i 2626 . . . 4 ((𝐹 “ {𝑥}) = {𝑦} ↔ {𝑦𝑥𝐹𝑦} = {𝑦})
54exbii 1773 . . 3 (∃𝑦(𝐹 “ {𝑥}) = {𝑦} ↔ ∃𝑦{𝑦𝑥𝐹𝑦} = {𝑦})
6 euabsn 4259 . . 3 (∃!𝑦 𝑥𝐹𝑦 ↔ ∃𝑦{𝑦𝑥𝐹𝑦} = {𝑦})
75, 6bitr4i 267 . 2 (∃𝑦(𝐹 “ {𝑥}) = {𝑦} ↔ ∃!𝑦 𝑥𝐹𝑦)
87abbii 2738 1 {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1482  wex 1703  wcel 1989  ∃!weu 2469  {cab 2607  Vcvv 3198  {csn 4175   class class class wbr 4651  cima 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pr 4904
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-op 4182  df-br 4652  df-opab 4711  df-xp 5118  df-cnv 5120  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator