MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwrid Structured version   Visualization version   GIF version

Theorem arwrid 17335
Description: Right identity of a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwlid.h 𝐻 = (Homa𝐶)
arwlid.o · = (compa𝐶)
arwlid.a 1 = (Ida𝐶)
arwlid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
arwrid (𝜑 → (𝐹 · ( 1𝑋)) = 𝐹)

Proof of Theorem arwrid
StepHypRef Expression
1 arwlid.a . . . . . 6 1 = (Ida𝐶)
2 eqid 2823 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
3 arwlid.f . . . . . . 7 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
4 arwlid.h . . . . . . . 8 𝐻 = (Homa𝐶)
54homarcl 17290 . . . . . . 7 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
63, 5syl 17 . . . . . 6 (𝜑𝐶 ∈ Cat)
7 eqid 2823 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
84, 2homarcl2 17297 . . . . . . . 8 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
93, 8syl 17 . . . . . . 7 (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
109simpld 497 . . . . . 6 (𝜑𝑋 ∈ (Base‘𝐶))
111, 2, 6, 7, 10ida2 17321 . . . . 5 (𝜑 → (2nd ‘( 1𝑋)) = ((Id‘𝐶)‘𝑋))
1211oveq2d 7174 . . . 4 (𝜑 → ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(2nd ‘( 1𝑋))) = ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)))
13 eqid 2823 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
14 eqid 2823 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
159simprd 498 . . . . 5 (𝜑𝑌 ∈ (Base‘𝐶))
164, 13homahom 17301 . . . . . 6 (𝐹 ∈ (𝑋𝐻𝑌) → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
173, 16syl 17 . . . . 5 (𝜑 → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
182, 13, 7, 6, 10, 14, 15, 17catrid 16957 . . . 4 (𝜑 → ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = (2nd𝐹))
1912, 18eqtrd 2858 . . 3 (𝜑 → ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(2nd ‘( 1𝑋))) = (2nd𝐹))
2019oteq3d 4819 . 2 (𝜑 → ⟨𝑋, 𝑌, ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(2nd ‘( 1𝑋)))⟩ = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
21 arwlid.o . . 3 · = (compa𝐶)
221, 2, 6, 10, 4idahom 17322 . . 3 (𝜑 → ( 1𝑋) ∈ (𝑋𝐻𝑋))
2321, 4, 22, 3, 14coaval 17330 . 2 (𝜑 → (𝐹 · ( 1𝑋)) = ⟨𝑋, 𝑌, ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(2nd ‘( 1𝑋)))⟩)
244homadmcd 17304 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
253, 24syl 17 . 2 (𝜑𝐹 = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
2620, 23, 253eqtr4d 2868 1 (𝜑 → (𝐹 · ( 1𝑋)) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cop 4575  cotp 4577  cfv 6357  (class class class)co 7158  2nd c2nd 7690  Basecbs 16485  Hom chom 16578  compcco 16579  Catccat 16937  Idccid 16938  Homachoma 17285  Idacida 17315  compaccoa 17316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-ot 4578  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-cat 16941  df-cid 16942  df-doma 17286  df-coda 17287  df-homa 17288  df-arw 17289  df-ida 17317  df-coa 17318
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator