MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclfval Structured version   Visualization version   GIF version

Theorem asclfval 20111
Description: Function value of the algebraic scalars function. (Contributed by Mario Carneiro, 8-Mar-2015.)
Hypotheses
Ref Expression
asclfval.a 𝐴 = (algSc‘𝑊)
asclfval.f 𝐹 = (Scalar‘𝑊)
asclfval.k 𝐾 = (Base‘𝐹)
asclfval.s · = ( ·𝑠𝑊)
asclfval.o 1 = (1r𝑊)
Assertion
Ref Expression
asclfval 𝐴 = (𝑥𝐾 ↦ (𝑥 · 1 ))
Distinct variable groups:   𝑥,𝐾   𝑥, 1   𝑥, ·   𝑥,𝑊
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem asclfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 asclfval.a . 2 𝐴 = (algSc‘𝑊)
2 fveq2 6673 . . . . . . . 8 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
3 asclfval.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
42, 3syl6eqr 2877 . . . . . . 7 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
54fveq2d 6677 . . . . . 6 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
6 asclfval.k . . . . . 6 𝐾 = (Base‘𝐹)
75, 6syl6eqr 2877 . . . . 5 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾)
8 fveq2 6673 . . . . . . 7 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
9 asclfval.s . . . . . . 7 · = ( ·𝑠𝑊)
108, 9syl6eqr 2877 . . . . . 6 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
11 eqidd 2825 . . . . . 6 (𝑤 = 𝑊𝑥 = 𝑥)
12 fveq2 6673 . . . . . . 7 (𝑤 = 𝑊 → (1r𝑤) = (1r𝑊))
13 asclfval.o . . . . . . 7 1 = (1r𝑊)
1412, 13syl6eqr 2877 . . . . . 6 (𝑤 = 𝑊 → (1r𝑤) = 1 )
1510, 11, 14oveq123d 7180 . . . . 5 (𝑤 = 𝑊 → (𝑥( ·𝑠𝑤)(1r𝑤)) = (𝑥 · 1 ))
167, 15mpteq12dv 5154 . . . 4 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠𝑤)(1r𝑤))) = (𝑥𝐾 ↦ (𝑥 · 1 )))
17 df-ascl 20090 . . . 4 algSc = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠𝑤)(1r𝑤))))
1816, 17, 6mptfvmpt 6993 . . 3 (𝑊 ∈ V → (algSc‘𝑊) = (𝑥𝐾 ↦ (𝑥 · 1 )))
19 fvprc 6666 . . . . 5 𝑊 ∈ V → (algSc‘𝑊) = ∅)
20 mpt0 6493 . . . . 5 (𝑥 ∈ ∅ ↦ (𝑥 · 1 )) = ∅
2119, 20syl6eqr 2877 . . . 4 𝑊 ∈ V → (algSc‘𝑊) = (𝑥 ∈ ∅ ↦ (𝑥 · 1 )))
22 fvprc 6666 . . . . . . . . 9 𝑊 ∈ V → (Scalar‘𝑊) = ∅)
233, 22syl5eq 2871 . . . . . . . 8 𝑊 ∈ V → 𝐹 = ∅)
2423fveq2d 6677 . . . . . . 7 𝑊 ∈ V → (Base‘𝐹) = (Base‘∅))
25 base0 16539 . . . . . . 7 ∅ = (Base‘∅)
2624, 25syl6eqr 2877 . . . . . 6 𝑊 ∈ V → (Base‘𝐹) = ∅)
276, 26syl5eq 2871 . . . . 5 𝑊 ∈ V → 𝐾 = ∅)
2827mpteq1d 5158 . . . 4 𝑊 ∈ V → (𝑥𝐾 ↦ (𝑥 · 1 )) = (𝑥 ∈ ∅ ↦ (𝑥 · 1 )))
2921, 28eqtr4d 2862 . . 3 𝑊 ∈ V → (algSc‘𝑊) = (𝑥𝐾 ↦ (𝑥 · 1 )))
3018, 29pm2.61i 184 . 2 (algSc‘𝑊) = (𝑥𝐾 ↦ (𝑥 · 1 ))
311, 30eqtri 2847 1 𝐴 = (𝑥𝐾 ↦ (𝑥 · 1 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1536  wcel 2113  Vcvv 3497  c0 4294  cmpt 5149  cfv 6358  (class class class)co 7159  Basecbs 16486  Scalarcsca 16571   ·𝑠 cvsca 16572  1rcur 19254  algSccascl 20087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-slot 16490  df-base 16492  df-ascl 20090
This theorem is referenced by:  asclval  20112  asclfn  20113  asclf  20114  rnascl  20123  ressascl  20128  asclpropd  20129  rnasclg  39137
  Copyright terms: Public domain W3C validator