MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinlem Structured version   Visualization version   GIF version

Theorem asinlem 25448
Description: The argument to the logarithm in df-asin 25445 is always nonzero. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
asinlem (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0)

Proof of Theorem asinlem
StepHypRef Expression
1 ax-icn 10598 . . . 4 i ∈ ℂ
2 mulcl 10623 . . . 4 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 688 . . 3 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 ax-1cn 10597 . . . . 5 1 ∈ ℂ
5 sqcl 13487 . . . . 5 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
6 subcl 10887 . . . . 5 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
74, 5, 6sylancr 589 . . . 4 (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ)
87sqrtcld 14799 . . 3 (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ)
93, 8subnegd 11006 . 2 (𝐴 ∈ ℂ → ((i · 𝐴) − -(√‘(1 − (𝐴↑2)))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
108negcld 10986 . . 3 (𝐴 ∈ ℂ → -(√‘(1 − (𝐴↑2))) ∈ ℂ)
11 0ne1 11711 . . . . . 6 0 ≠ 1
12 0cnd 10636 . . . . . . 7 (𝐴 ∈ ℂ → 0 ∈ ℂ)
13 1cnd 10638 . . . . . . 7 (𝐴 ∈ ℂ → 1 ∈ ℂ)
14 subcan2 10913 . . . . . . . 8 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((0 − (𝐴↑2)) = (1 − (𝐴↑2)) ↔ 0 = 1))
1514necon3bid 3062 . . . . . . 7 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((0 − (𝐴↑2)) ≠ (1 − (𝐴↑2)) ↔ 0 ≠ 1))
1612, 13, 5, 15syl3anc 1367 . . . . . 6 (𝐴 ∈ ℂ → ((0 − (𝐴↑2)) ≠ (1 − (𝐴↑2)) ↔ 0 ≠ 1))
1711, 16mpbiri 260 . . . . 5 (𝐴 ∈ ℂ → (0 − (𝐴↑2)) ≠ (1 − (𝐴↑2)))
18 sqmul 13488 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
191, 18mpan 688 . . . . . . 7 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
20 i2 13568 . . . . . . . . 9 (i↑2) = -1
2120oveq1i 7168 . . . . . . . 8 ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2))
225mulm1d 11094 . . . . . . . 8 (𝐴 ∈ ℂ → (-1 · (𝐴↑2)) = -(𝐴↑2))
2321, 22syl5eq 2870 . . . . . . 7 (𝐴 ∈ ℂ → ((i↑2) · (𝐴↑2)) = -(𝐴↑2))
2419, 23eqtrd 2858 . . . . . 6 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = -(𝐴↑2))
25 df-neg 10875 . . . . . 6 -(𝐴↑2) = (0 − (𝐴↑2))
2624, 25syl6eq 2874 . . . . 5 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = (0 − (𝐴↑2)))
27 sqneg 13485 . . . . . . 7 ((√‘(1 − (𝐴↑2))) ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = ((√‘(1 − (𝐴↑2)))↑2))
288, 27syl 17 . . . . . 6 (𝐴 ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = ((√‘(1 − (𝐴↑2)))↑2))
297sqsqrtd 14801 . . . . . 6 (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2)))↑2) = (1 − (𝐴↑2)))
3028, 29eqtrd 2858 . . . . 5 (𝐴 ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = (1 − (𝐴↑2)))
3117, 26, 303netr4d 3095 . . . 4 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) ≠ (-(√‘(1 − (𝐴↑2)))↑2))
32 oveq1 7165 . . . . 5 ((i · 𝐴) = -(√‘(1 − (𝐴↑2))) → ((i · 𝐴)↑2) = (-(√‘(1 − (𝐴↑2)))↑2))
3332necon3i 3050 . . . 4 (((i · 𝐴)↑2) ≠ (-(√‘(1 − (𝐴↑2)))↑2) → (i · 𝐴) ≠ -(√‘(1 − (𝐴↑2))))
3431, 33syl 17 . . 3 (𝐴 ∈ ℂ → (i · 𝐴) ≠ -(√‘(1 − (𝐴↑2))))
353, 10, 34subne0d 11008 . 2 (𝐴 ∈ ℂ → ((i · 𝐴) − -(√‘(1 − (𝐴↑2)))) ≠ 0)
369, 35eqnetrrd 3086 1 (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1537  wcel 2114  wne 3018  cfv 6357  (class class class)co 7158  cc 10537  0cc0 10539  1c1 10540  ici 10541   + caddc 10542   · cmul 10544  cmin 10872  -cneg 10873  2c2 11695  cexp 13432  csqrt 14594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597
This theorem is referenced by:  asinlem3  25451  asinf  25452  asinneg  25466  efiasin  25468  asinbnd  25479  dvasin  34980
  Copyright terms: Public domain W3C validator