MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinlem Structured version   Visualization version   GIF version

Theorem asinlem 24495
Description: The argument to the logarithm in df-asin 24492 is always nonzero. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
asinlem (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0)

Proof of Theorem asinlem
StepHypRef Expression
1 ax-icn 9939 . . . 4 i ∈ ℂ
2 mulcl 9964 . . . 4 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 705 . . 3 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 ax-1cn 9938 . . . . 5 1 ∈ ℂ
5 sqcl 12865 . . . . 5 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
6 subcl 10224 . . . . 5 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
74, 5, 6sylancr 694 . . . 4 (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ)
87sqrtcld 14110 . . 3 (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ)
93, 8subnegd 10343 . 2 (𝐴 ∈ ℂ → ((i · 𝐴) − -(√‘(1 − (𝐴↑2)))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
108negcld 10323 . . 3 (𝐴 ∈ ℂ → -(√‘(1 − (𝐴↑2))) ∈ ℂ)
11 0ne1 11032 . . . . . 6 0 ≠ 1
12 0cnd 9977 . . . . . . 7 (𝐴 ∈ ℂ → 0 ∈ ℂ)
13 1cnd 10000 . . . . . . 7 (𝐴 ∈ ℂ → 1 ∈ ℂ)
14 subcan2 10250 . . . . . . . 8 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((0 − (𝐴↑2)) = (1 − (𝐴↑2)) ↔ 0 = 1))
1514necon3bid 2834 . . . . . . 7 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((0 − (𝐴↑2)) ≠ (1 − (𝐴↑2)) ↔ 0 ≠ 1))
1612, 13, 5, 15syl3anc 1323 . . . . . 6 (𝐴 ∈ ℂ → ((0 − (𝐴↑2)) ≠ (1 − (𝐴↑2)) ↔ 0 ≠ 1))
1711, 16mpbiri 248 . . . . 5 (𝐴 ∈ ℂ → (0 − (𝐴↑2)) ≠ (1 − (𝐴↑2)))
18 sqmul 12866 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
191, 18mpan 705 . . . . . . 7 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
20 i2 12905 . . . . . . . . 9 (i↑2) = -1
2120oveq1i 6614 . . . . . . . 8 ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2))
225mulm1d 10426 . . . . . . . 8 (𝐴 ∈ ℂ → (-1 · (𝐴↑2)) = -(𝐴↑2))
2321, 22syl5eq 2667 . . . . . . 7 (𝐴 ∈ ℂ → ((i↑2) · (𝐴↑2)) = -(𝐴↑2))
2419, 23eqtrd 2655 . . . . . 6 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = -(𝐴↑2))
25 df-neg 10213 . . . . . 6 -(𝐴↑2) = (0 − (𝐴↑2))
2624, 25syl6eq 2671 . . . . 5 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = (0 − (𝐴↑2)))
27 sqneg 12863 . . . . . . 7 ((√‘(1 − (𝐴↑2))) ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = ((√‘(1 − (𝐴↑2)))↑2))
288, 27syl 17 . . . . . 6 (𝐴 ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = ((√‘(1 − (𝐴↑2)))↑2))
297sqsqrtd 14112 . . . . . 6 (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2)))↑2) = (1 − (𝐴↑2)))
3028, 29eqtrd 2655 . . . . 5 (𝐴 ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = (1 − (𝐴↑2)))
3117, 26, 303netr4d 2867 . . . 4 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) ≠ (-(√‘(1 − (𝐴↑2)))↑2))
32 oveq1 6611 . . . . 5 ((i · 𝐴) = -(√‘(1 − (𝐴↑2))) → ((i · 𝐴)↑2) = (-(√‘(1 − (𝐴↑2)))↑2))
3332necon3i 2822 . . . 4 (((i · 𝐴)↑2) ≠ (-(√‘(1 − (𝐴↑2)))↑2) → (i · 𝐴) ≠ -(√‘(1 − (𝐴↑2))))
3431, 33syl 17 . . 3 (𝐴 ∈ ℂ → (i · 𝐴) ≠ -(√‘(1 − (𝐴↑2))))
353, 10, 34subne0d 10345 . 2 (𝐴 ∈ ℂ → ((i · 𝐴) − -(√‘(1 − (𝐴↑2)))) ≠ 0)
369, 35eqnetrrd 2858 1 (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1036   = wceq 1480  wcel 1987  wne 2790  cfv 5847  (class class class)co 6604  cc 9878  0cc0 9880  1c1 9881  ici 9882   + caddc 9883   · cmul 9885  cmin 10210  -cneg 10211  2c2 11014  cexp 12800  csqrt 13907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910
This theorem is referenced by:  asinlem3  24498  asinf  24499  asinneg  24513  efiasin  24515  asinbnd  24526  dvasin  33128
  Copyright terms: Public domain W3C validator